Arithmetic properties of partitions with even parts distinct

被引:1
|
作者
George E. Andrews
Michael D. Hirschhorn
James A. Sellers
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] UNSW,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2010年 / 23卷
关键词
Congruence; Partition; Distinct even parts; Generating function; Lebesgue identity; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n≥0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+4)\equiv0\pmod{4}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+7)\equiv0\pmod{12}.$$\end{document} Indeed, we compute appropriate generating functions from which we deduce these congruences and find, in particular, the surprising result that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n\geq0}\mathit{ped}(9n+7)q^n=12\frac{ (q^{2};q^{2})_\infty ^{4}(q^{3};q^{3})_\infty ^{6}(q^{4};q^{4})_\infty ^{}}{(q^{};q^{})_\infty ^{11}}.$$\end{document} We also show that ped(n) is divisible by 6 at least 1/6 of the time.
引用
收藏
页码:169 / 181
页数:12
相关论文
共 50 条