Arithmetic properties of partitions with even parts distinct

被引:1
|
作者
George E. Andrews
Michael D. Hirschhorn
James A. Sellers
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] UNSW,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2010年 / 23卷
关键词
Congruence; Partition; Distinct even parts; Generating function; Lebesgue identity; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n≥0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+4)\equiv0\pmod{4}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+7)\equiv0\pmod{12}.$$\end{document} Indeed, we compute appropriate generating functions from which we deduce these congruences and find, in particular, the surprising result that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n\geq0}\mathit{ped}(9n+7)q^n=12\frac{ (q^{2};q^{2})_\infty ^{4}(q^{3};q^{3})_\infty ^{6}(q^{4};q^{4})_\infty ^{}}{(q^{};q^{})_\infty ^{11}}.$$\end{document} We also show that ped(n) is divisible by 6 at least 1/6 of the time.
引用
收藏
页码:169 / 181
页数:12
相关论文
共 50 条
  • [11] Arithmetic properties of 3-regular partitions with distinct odd parts
    Veena, V. S.
    Fathima, S. N.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 69 - 80
  • [12] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    Hemanthkumar, B.
    Bharadwaj, H. S. Sumanth
    Naika, M. S. Mahadeva
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (03) : 797 - 811
  • [13] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    B. Hemanthkumar
    H. S. Sumanth Bharadwaj
    M. S. Mahadeva Naika
    Acta Mathematica Vietnamica, 2019, 44 : 797 - 811
  • [14] The number of partitions with distinct even parts revisited
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [15] A partition statistic for partitions with even parts distinct
    Robert X. J. Hao
    Monatshefte für Mathematik, 2023, 201 : 1105 - 1123
  • [16] A partition statistic for partitions with even parts distinct
    Hao, Robert X. J.
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1105 - 1123
  • [17] On the combinatorics of the number of even parts in all partitions with distinct parts
    Li, Runqiao
    Wang, Andrew Y. Z.
    RAMANUJAN JOURNAL, 2021, 56 (02): : 721 - 727
  • [18] On the Number of Even Parts in All Partitions of n into Distinct Parts
    Andrews, George E.
    Merca, Mircea
    ANNALS OF COMBINATORICS, 2020, 24 (01) : 47 - 54
  • [19] On the combinatorics of the number of even parts in all partitions with distinct parts
    Runqiao Li
    Andrew Y. Z. Wang
    The Ramanujan Journal, 2021, 56 : 721 - 727
  • [20] New relations for the number of partitions with distinct even parts
    Merca, Mircea
    JOURNAL OF NUMBER THEORY, 2017, 176 : 1 - 12