Arithmetic Properties of Non-Squashing Partitions into Distinct Parts

被引:0
|
作者
Øystein J. Rødseth
James A. Sellers
Kevin M. Courtright
机构
[1] University of Bergen,Department of Mathematics
[2] Penn State University,Department of Mathematics
关键词
05A17; 11P83; partitions; non-squashing partitions; stacking boxes; congruences;
D O I
10.1007/s00026-004-0224-4
中图分类号
学科分类号
摘要
A partition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = p_1 + p_2 + \cdots + p_k $$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq p_1 \leq p_2 \leq \cdots \leq p_k $$\end{document} is non-squashing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1 + \cdots + p_j \leqslant p_{j + 1} \;{\text{for}}\;1 \leqslant j \leqslant k - 1.$$\end{document} On their way towards the solution of a certain box-stacking problem, Sloane and Sellers were led to consider the number b(n) of non-squashing partitions of n into distinct parts. Sloane and Sellers did briefly consider congruences for b(n) modulo 2. In this paper we show that 2r-2 is the exact power of 2 dividing the difference b(2r+1n)−b(2r-1n) for n odd and r ≥ 2.
引用
收藏
页码:347 / 353
页数:6
相关论文
共 50 条
  • [41] On (l, m)- regular partitions with distinct parts
    Prasad, M.
    Prasad, K. V.
    RAMANUJAN JOURNAL, 2018, 46 (01): : 19 - 27
  • [42] The number of partitions with distinct even parts revisited
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [43] Maximum Product Over Partitions Into Distinct Parts
    Doslic, Tomislav
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (05)
  • [44] Partitions into distinct parts with bounded largest part
    Walter Bridges
    Research in Number Theory, 2020, 6
  • [45] Arithmetic Properties of Partition k-tuples with Odd Parts Distinct
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (05)
  • [46] Linear inequalities concerning partitions into distinct parts
    Mircea Merca
    The Ramanujan Journal, 2022, 58 : 491 - 503
  • [47] Core partitions with d-distinct parts
    Sahin, Murat
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 19 - 28
  • [49] On Multi-Color Partitions with Distinct Parts
    Knopfmacher, Arnold
    Robbins, Neville
    ARS COMBINATORIA, 2008, 89 : 401 - 419
  • [50] Minimal excludant over partitions into distinct parts
    Kaur, Prabh Simrat
    Bhoria, Subhash Chand
    Eyyunni, Pramod
    Maji, Bibekananda
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (09) : 2015 - 2028