A Poisson process reparameterisation for Bayesian inference for extremes

被引:1
|
作者
Paul Sharkey
Jonathan A. Tawn
机构
[1] Lancaster University,STOR
来源
Extremes | 2017年 / 20卷
关键词
Poisson processes; Extreme value theory; Bayesian inference; Reparameterisation; Covariate modelling; 60G70; 62F15; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
A common approach to modelling extreme values is to consider the excesses above a high threshold as realisations of a non-homogeneous Poisson process. While this method offers the advantage of modelling using threshold-invariant extreme value parameters, the dependence between these parameters makes estimation more difficult. We present a novel approach for Bayesian estimation of the Poisson process model parameters by reparameterising in terms of a tuning parameter m. This paper presents a method for choosing the optimal value of m that near-orthogonalises the parameters, which is achieved by minimising the correlation between the asymptotic posterior distribution of the parameters. This choice of m ensures more rapid convergence and efficient sampling from the joint posterior distribution using Markov Chain Monte Carlo methods. Samples from the parameterisation of interest are then obtained by a simple transform. Results are presented in the cases of identically and non-identically distributed models for extreme rainfall in Cumbria, UK.
引用
收藏
页码:239 / 263
页数:24
相关论文
共 50 条
  • [1] A Poisson process reparameterisation for Bayesian inference for extremes
    Sharkey, Paul
    Tawn, Jonathan A.
    EXTREMES, 2017, 20 (02) : 239 - 263
  • [2] Bayesian inference for clustered extremes
    Lee Fawcett
    David Walshaw
    Extremes, 2008, 11
  • [3] Bayesian inference for clustered extremes
    Fawcett, Lee
    Walshaw, David
    EXTREMES, 2008, 11 (03) : 217 - 233
  • [4] Bayesian inference for the Markov-modulated Poisson process with an outcome process
    Luo, Yu
    Sherlock, Chris
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [5] Bayesian Inference for Solar Flare Extremes
    Griffiths, B.
    Fawcett, L.
    Green, A. C.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2022, 20 (03):
  • [6] Bayesian inference for nonstationary marginal extremes
    Randell, D.
    Turnbull, K.
    Ewans, K.
    Jonathan, P.
    ENVIRONMETRICS, 2016, 27 (07) : 439 - 450
  • [7] Bayesian Inference Based Reconstruction for Poisson Statistics
    Dey, Joyoni
    Xu, Jingzhu
    Bhusal, Narayan
    Shumilov, Dmytro
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [8] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [9] Bayesian nonparametric inference for mixed Poisson processes
    Gutiérrez-Peña, E
    Nieto-Barajas, LE
    BAYESIAN STATISTICS 7, 2003, : 163 - 179
  • [10] Bayesian inference for pseudo-Poisson data
    Arnold, Barry C.
    Veeranna, Banoth
    Manjunath, B. G.
    Shobha, B.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (06) : 904 - 931