Bayesian Inference Based Reconstruction for Poisson Statistics

被引:0
|
作者
Dey, Joyoni [1 ]
Xu, Jingzhu [1 ]
Bhusal, Narayan [1 ]
Shumilov, Dmytro [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A new reconstruction method is explored using Bayesian inference for Poisson Statistics for emission tomography. The Gamma density function is chosen as the natural choice for the activity distribution at each voxel, being the conjugate-prior of Poisson distribution. The update equations of the shape and rate parameters for Gamma distribution are derived and tested on a simple 2D example using Metropolis Hastings algorithm. The results show promise with quick convergence within similar to 20 iterations and stable noise properties with iteration. A 3D algorithm and comparison with OSEM is underway.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Bayesian Inference and Uncertainty Quantification for Medical Image Reconstruction with Poisson Data
    Zhou, Qingping
    Yu, Tengchao
    Zhang, Xiaoqun
    Li, Jinglai
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (01): : 29 - 52
  • [2] A molecular prior distribution for Bayesian inference based on Wilson statistics
    Gilles, Marc Aurèle
    Singer, Amit
    Computer Methods and Programs in Biomedicine, 2022, 221
  • [3] A molecular prior distribution for Bayesian inference based on Wilson statistics
    Gilles, Marc Aurele
    Singer, Amit
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [4] Cosmological Parameter Inference with Bayesian Statistics
    Padilla, Luis E.
    Tellez, Luis O.
    Escamilla, Luis A.
    Alberto Vazquez, Jose
    UNIVERSE, 2021, 7 (07)
  • [5] A Poisson process reparameterisation for Bayesian inference for extremes
    Paul Sharkey
    Jonathan A. Tawn
    Extremes, 2017, 20 : 239 - 263
  • [6] Bayesian nonparametric inference for mixed Poisson processes
    Gutiérrez-Peña, E
    Nieto-Barajas, LE
    BAYESIAN STATISTICS 7, 2003, : 163 - 179
  • [7] A Poisson process reparameterisation for Bayesian inference for extremes
    Sharkey, Paul
    Tawn, Jonathan A.
    EXTREMES, 2017, 20 (02) : 239 - 263
  • [8] Bayesian inference for pseudo-Poisson data
    Arnold, Barry C.
    Veeranna, Banoth
    Manjunath, B. G.
    Shobha, B.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (06) : 904 - 931
  • [9] Bayesian credible interval construction for Poisson statistics
    朱永生
    Chinese Physics C, 2008, (05) : 363 - 369
  • [10] Bayesian credible interval construction for poisson statistics
    Zhu Yong-Sheng
    CHINESE PHYSICS C, 2008, 32 (05) : 363 - 369