Bayesian Inference Based Reconstruction for Poisson Statistics

被引:0
|
作者
Dey, Joyoni [1 ]
Xu, Jingzhu [1 ]
Bhusal, Narayan [1 ]
Shumilov, Dmytro [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A new reconstruction method is explored using Bayesian inference for Poisson Statistics for emission tomography. The Gamma density function is chosen as the natural choice for the activity distribution at each voxel, being the conjugate-prior of Poisson distribution. The update equations of the shape and rate parameters for Gamma distribution are derived and tested on a simple 2D example using Metropolis Hastings algorithm. The results show promise with quick convergence within similar to 20 iterations and stable noise properties with iteration. A 3D algorithm and comparison with OSEM is underway.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] INTRODUCTION TO BAYESIAN INFERENCE AND STATISTICS - WINKLER,RL
    ADAMEC, S
    EKONOMICKO-MATEMATICKY OBZOR, 1975, 11 (02): : 228 - 229
  • [22] Bayesian Inference and Online Learning in Poisson Neuronal Networks
    Huang, Yanping
    Rao, Rajesh P. N.
    NEURAL COMPUTATION, 2016, 28 (08) : 1503 - 1526
  • [23] BAYESIAN FILTERING OF POISSON NOISE USING LOCAL STATISTICS
    RABBANI, M
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (06): : 933 - 937
  • [24] Bayesian inference of Unit Gompertz distribution based on dual generalized order statistics
    Arshad, Mohd.
    J. Azhad, Qazi
    Gupta, Neetu
    Pathak, Ashok Kumar
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (08) : 3657 - 3675
  • [25] Conflicts in Bayesian Statistics Between Inference Based on Credible Intervals and Bayes Factors
    Lovric, Miodrag M.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (01)
  • [26] Multi-frame Super Resolution Reconstruction Based on Bayesian Inference
    Guo, Xiaofeng
    Qi, Bo
    Shi, Jianliang
    PROCEEDINGS OF THE 2017 GLOBAL CONFERENCE ON MECHANICS AND CIVIL ENGINEERING (GCMCE 2017), 2017, 132 : 14 - 18
  • [27] On a full Bayesian inference for force reconstruction problems
    Aucejo, M.
    De Smet, O.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 36 - 59
  • [28] Efficient Bayesian inference for COM-Poisson regression models
    Chanialidis, Charalampos
    Evers, Ludger
    Neocleous, Tereza
    Nobile, Agostino
    STATISTICS AND COMPUTING, 2018, 28 (03) : 595 - 608
  • [29] Efficient Bayesian inference for COM-Poisson regression models
    Charalampos Chanialidis
    Ludger Evers
    Tereza Neocleous
    Agostino Nobile
    Statistics and Computing, 2018, 28 : 595 - 608
  • [30] Bayesian Inference Based on Dual Generalized Order Statistics from the Exponentiated Weibull Model
    Al Sobhi, Mashail M.
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 135 - 143