A Poisson process reparameterisation for Bayesian inference for extremes

被引:1
|
作者
Paul Sharkey
Jonathan A. Tawn
机构
[1] Lancaster University,STOR
来源
Extremes | 2017年 / 20卷
关键词
Poisson processes; Extreme value theory; Bayesian inference; Reparameterisation; Covariate modelling; 60G70; 62F15; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
A common approach to modelling extreme values is to consider the excesses above a high threshold as realisations of a non-homogeneous Poisson process. While this method offers the advantage of modelling using threshold-invariant extreme value parameters, the dependence between these parameters makes estimation more difficult. We present a novel approach for Bayesian estimation of the Poisson process model parameters by reparameterising in terms of a tuning parameter m. This paper presents a method for choosing the optimal value of m that near-orthogonalises the parameters, which is achieved by minimising the correlation between the asymptotic posterior distribution of the parameters. This choice of m ensures more rapid convergence and efficient sampling from the joint posterior distribution using Markov Chain Monte Carlo methods. Samples from the parameterisation of interest are then obtained by a simple transform. Results are presented in the cases of identically and non-identically distributed models for extreme rainfall in Cumbria, UK.
引用
收藏
页码:239 / 263
页数:24
相关论文
共 50 条
  • [41] Variational Inference for Gaussian Process Modulated Poisson Processes
    Lloyd, Chris
    Gunter, Tom
    Osborne, Michael A.
    Roberts, Stephen J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1814 - 1822
  • [42] Process Fault Diagnosis Based on Bayesian Inference
    Liu, Jialin
    Liu, Shu Jie
    Wong, David Shan Hill
    23 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2013, 32 : 751 - 756
  • [43] Bayesian inference with rescaled Gaussian process priors
    van der Vaart, Aad
    van Zanten, Harry
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 433 - 448
  • [44] Bayesian haplotype inference via the Dirichlet process
    Xing, Eric P.
    Jordan, Michael I.
    Sharan, Roded
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (03) : 267 - 284
  • [45] Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet process prior
    Favaro, Stefano
    Lijoi, Antonio
    Mena, Ramses H.
    Prunster, Igor
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 993 - 1008
  • [46] BAYESIAN-INFERENCE FOR THE POWER LAW PROCESS
    BARLEV, SK
    LAVI, I
    REISER, B
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (04) : 623 - 639
  • [47] Empirical Bayesian estimators for a Poisson process propagated in time
    Heisterkamp, SH
    van Houwelingen, JC
    Downs, AM
    BIOMETRICAL JOURNAL, 1999, 41 (04) : 385 - 400
  • [48] DISORDER PROBLEM FOR POISSON PROCESS IN GENERALIZED BAYESIAN SETTING
    Burnaev, E. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (03) : 500 - 518
  • [49] Disorder problem for a Poisson process in the generalized Bayesian setting
    Burnaev, E. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 790 - 792
  • [50] Inference for stereological extremes
    Bortot, P.
    Coles, S. G.
    Sisson, S. A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 84 - 92