A Poisson process reparameterisation for Bayesian inference for extremes

被引:1
|
作者
Paul Sharkey
Jonathan A. Tawn
机构
[1] Lancaster University,STOR
来源
Extremes | 2017年 / 20卷
关键词
Poisson processes; Extreme value theory; Bayesian inference; Reparameterisation; Covariate modelling; 60G70; 62F15; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
A common approach to modelling extreme values is to consider the excesses above a high threshold as realisations of a non-homogeneous Poisson process. While this method offers the advantage of modelling using threshold-invariant extreme value parameters, the dependence between these parameters makes estimation more difficult. We present a novel approach for Bayesian estimation of the Poisson process model parameters by reparameterising in terms of a tuning parameter m. This paper presents a method for choosing the optimal value of m that near-orthogonalises the parameters, which is achieved by minimising the correlation between the asymptotic posterior distribution of the parameters. This choice of m ensures more rapid convergence and efficient sampling from the joint posterior distribution using Markov Chain Monte Carlo methods. Samples from the parameterisation of interest are then obtained by a simple transform. Results are presented in the cases of identically and non-identically distributed models for extreme rainfall in Cumbria, UK.
引用
收藏
页码:239 / 263
页数:24
相关论文
共 50 条
  • [31] Bayesian estimation for a Poisson process with a discontinuous intensity
    Dabye, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (05): : 427 - 430
  • [32] Bayesian prediction in doubly stochastic Poisson process
    Alicja Jokiel-Rokita
    Daniel Lazar
    Ryszard Magiera
    Metrika, 2014, 77 : 1023 - 1039
  • [33] Bayesian prediction in doubly stochastic Poisson process
    Jokiel-Rokita, Alicja
    Lazar, Daniel
    Magiera, Ryszard
    METRIKA, 2014, 77 (08) : 1023 - 1039
  • [34] Uncertainties in projections of climate extremes indices in South America via Bayesian inference
    Gouveia, Carolina Daniel
    Rodrigues Torres, Roger
    Marengo, Jose Antonio
    Avila-Diaz, Alvaro
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (14) : 7362 - 7382
  • [35] Controlling the degree of caution in statistical inference with the Bayesian and frequentist approaches as opposite extremes
    Bickel, David R.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 686 - 709
  • [36] Bayesian Inference and Uncertainty Quantification for Medical Image Reconstruction with Poisson Data
    Zhou, Qingping
    Yu, Tengchao
    Zhang, Xiaoqun
    Li, Jinglai
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (01): : 29 - 52
  • [37] Fully Bayesian inference for α-stable distributions using a Poisson series representation
    Lemke, Tatjana
    Riabiz, Marina
    Godsill, Simon J.
    DIGITAL SIGNAL PROCESSING, 2015, 47 : 96 - 115
  • [38] BAYESIAN NONPARAMETRIC STATISTICAL-INFERENCE FOR POISSON POINT-PROCESSES
    LO, AY
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (01): : 55 - 66
  • [39] A Bayesian inference of P(λ1 < λ2) for two Poisson parameters
    Kawasaki, Youhei
    Miyaoka, Etsuo
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (10) : 2141 - 2152
  • [40] Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters
    Kawasaki, Yohei
    Miyaoka, Etsuo
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (01) : 397 - 409