Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles

被引:0
|
作者
Gilles Durrieu
Ion Grama
Quang-Khoai Pham
Jean-Marie Tricot
机构
[1] Université de Bretagne Sud,
[2] LMBA,undefined
来源
Extremes | 2015年 / 18卷
关键词
Nonparametric estimation; Tail conditional probabilities; Extreme conditional quantile; Adaptive estimation; Environment; 62G32; 62G08; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ft(x)=P(X≤x|T=t) be the conditional distribution of a random variable X given that a covariate T takes the value t∈[0,Tmax],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t \in [0,T_{\max }],$\end{document} where we assume that the distributions Ft are in the domain of attraction of the Fréchet distribution. We observe independent random variables Xt1,...,Xtn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{1}},...,X_{t_{n}}$\end{document} associated to a sequence of times 0≤t1<...<tn≤Tmax,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq t_{1}<...<t_{n}\leq T_{\max },$\end{document} where Xti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{i}}$\end{document} has the distribution function Fti.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{t_{i}}.$\end{document} For each t∈[0,Tmax]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,T_{\max }]$\end{document}, we propose a nonparametric adaptive estimator for extreme tail probabilities and quantiles of Ft. It follows from the Fisher-Tippett-Gnedenko theorem that the tail of the distribution function Ft can be adjusted with a Pareto distribution of parameter 𝜃t,τ starting from a threshold τ. We estimate the parameter 𝜃t,τ using a nonparametric kernel estimator of bandwidth h based on the observations larger than τ and we propose a pointwise data driven procedure to choose the threshold τ. A global selection of the bandwidth h based on a cross-validation approach is given. Under some regularity assumptions, we prove that the non adaptive and adaptive estimators of 𝜃t,τ are consistent and we determine their rate of convergence. Finally, we study this procedure using simulations and we analyze an environmental data set.
引用
收藏
页码:437 / 478
页数:41
相关论文
共 50 条
  • [21] Nonparametric prediction by conditional median and quantiles
    Gannoun, A
    Saracco, J
    Yu, KM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 207 - 223
  • [22] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    [J]. ENVIRONMETRICS, 2018, 29 (02)
  • [23] Nonparametric estimation of a maximum of quantiles
    Enss, Georg C.
    Goetz, Benedict
    Kohler, Michael
    Krzyzak, Adam
    Platz, Roland
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 3176 - 3192
  • [24] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    [J]. ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [25] SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
    Kurisu, Daisuke
    Otsu, Taisuke
    [J]. ECONOMETRIC THEORY, 2023,
  • [26] Nonparametric estimates for conditional quantiles of time series
    Franke, Juergen
    Mwita, Peter
    Wang, Weining
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2015, 99 (01) : 107 - 130
  • [27] Nonparametric estimates for conditional quantiles of time series
    Jürgen Franke
    Peter Mwita
    Weining Wang
    [J]. AStA Advances in Statistical Analysis, 2015, 99 : 107 - 130
  • [28] Nonparametric extrapolation of extreme quantiles: a comparison study
    Banfi, Fabiola
    Cazzaniga, Greta
    De Michele, Carlo
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (06) : 1579 - 1596
  • [29] Nonparametric asymptotic confidence intervals for extreme quantiles
    Gardes, Laurent
    Maistre, Samuel
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 825 - 841
  • [30] Nonparametric extrapolation of extreme quantiles: a comparison study
    Fabiola Banfi
    Greta Cazzaniga
    Carlo De Michele
    [J]. Stochastic Environmental Research and Risk Assessment, 2022, 36 : 1579 - 1596