Nonparametric asymptotic confidence intervals for extreme quantiles

被引:1
|
作者
Gardes, Laurent [1 ,2 ]
Maistre, Samuel
机构
[1] Univ Strasbourg, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
confidence interval; extreme quantiles; heavy-tailed distribution; TAIL INDEX; SAMPLE FRACTION; INFERENCE;
D O I
10.1111/sjos.12610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose new asymptotic confidence intervals for extreme quantiles, that is, for quantiles located outside the range of the available data. We restrict ourselves to the situation where the underlying distribution is heavy-tailed. While asymptotic confidence intervals are mostly constructed around a pivotal quantity, we consider here an alternative approach based on the distribution of order statistics sampled from a uniform distribution. The convergence of the coverage probability to the nominal one is established under a classical second-order condition. The finite sample behavior is also examined and our methodology is applied to a real dataset.
引用
收藏
页码:825 / 841
页数:17
相关论文
共 50 条
  • [1] Best exact nonparametric confidence intervals for quantiles
    Zielinski, R
    Zielinski, W
    [J]. STATISTICS, 2005, 39 (01) : 67 - 71
  • [2] Nonparametric Confidence Intervals for Quantiles with Randomized Nomination Sampling
    Nourmohammadi, Mohammad
    Jozani, Mohammad Jafari
    Johnson, Brad C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2015, 77 (02): : 408 - 432
  • [3] Nonparametric Confidence Intervals for Quantiles with Randomized Nomination Sampling
    Nourmohammadi M.
    Jafari Jozani M.
    Johnson B.C.
    [J]. Sankhya A, 2015, 77 (2): : 408 - 432
  • [4] Confidence intervals for extreme Pareto-type quantiles
    Buitendag, Sven
    Beirlant, Jan
    De Wet, Tertius
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 36 - 55
  • [5] Calculating nonparametric confidence intervals for quantiles using fractional order statistics
    Hutson, AD
    [J]. JOURNAL OF APPLIED STATISTICS, 1999, 26 (03) : 343 - 353
  • [6] What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?
    Frey, Jesse
    Zhang, Yimin
    [J]. AMERICAN STATISTICIAN, 2017, 71 (04): : 305 - 309
  • [7] Nonparametric confidence intervals for quantiles based on a modified ranked set sampling
    Morabbi, Hakime
    Razmkhah, Mostafa
    Ahmadi, Jafar
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (02) : 119 - 129
  • [8] Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates
    Gardes, Laurent
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 661 - 701
  • [9] Nonparametric confidence intervals based on extreme bootstrap percentiles
    Lee, SMS
    [J]. STATISTICA SINICA, 2000, 10 (02) : 475 - 496
  • [10] Nonparametric Confidence Interval for Quantiles
    Ghalibaf, Mohammad Bolbolian
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 23 - 38