Best exact nonparametric confidence intervals for quantiles

被引:14
|
作者
Zielinski, R
Zielinski, W
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw 10, Poland
[2] Agr Univ Warsaw, Dept Econometr & Comp Sci, PL-02787 Warsaw, Poland
关键词
confidence intervals; nonpararmetrics; quantiles;
D O I
10.1080/02331880412331329854
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Well-known nonparametric confidence intervals for quantiles are of the form (X-i:n, X-j:n) with suitably chosen order statistics X-i:n and X-j:n, but typically their coverage levels differ from those prescribed. It appears that the coverage level of the confidence interval of the form (X-i:n, X-j:n) with random indices I and J can be rendered equal, exactly to any predetermined level gamma epsilon (0, 1). Best in the sense of minimum E(J - I), i.e., 'the shortest', two-sided confidence intervals are constructed. If no twosided confidence interval exists for a given gamma, the most accurate one-sided confidence intervals are constructed.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [1] Nonparametric asymptotic confidence intervals for extreme quantiles
    Gardes, Laurent
    Maistre, Samuel
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 825 - 841
  • [2] Nonparametric Confidence Intervals for Quantiles with Randomized Nomination Sampling
    Nourmohammadi, Mohammad
    Jozani, Mohammad Jafari
    Johnson, Brad C.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2015, 77 (02): : 408 - 432
  • [3] Nonparametric Confidence Intervals for Quantiles with Randomized Nomination Sampling
    Nourmohammadi M.
    Jafari Jozani M.
    Johnson B.C.
    [J]. Sankhya A, 2015, 77 (2): : 408 - 432
  • [4] Calculating nonparametric confidence intervals for quantiles using fractional order statistics
    Hutson, AD
    [J]. JOURNAL OF APPLIED STATISTICS, 1999, 26 (03) : 343 - 353
  • [5] What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?
    Frey, Jesse
    Zhang, Yimin
    [J]. AMERICAN STATISTICIAN, 2017, 71 (04): : 305 - 309
  • [6] Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates
    Gardes, Laurent
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 661 - 701
  • [7] Nonparametric confidence intervals for quantiles based on a modified ranked set sampling
    Morabbi, Hakime
    Razmkhah, Mostafa
    Ahmadi, Jafar
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (02) : 119 - 129
  • [8] Nonparametric Confidence Interval for Quantiles
    Ghalibaf, Mohammad Bolbolian
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 23 - 38
  • [9] Nonparametric Ranked-set Sampling Confidence Intervals for Quantiles of a Finite Population
    Jayant V. Deshpande
    Jesse Frey
    Omer Ozturk
    [J]. Environmental and Ecological Statistics, 2006, 13 : 25 - 40
  • [10] Nonparametric ranked-set sampling confidence intervals for quantiles of a finite population
    Deshpande, JV
    Frey, J
    Ozturk, O
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2006, 13 (01) : 25 - 40