Best exact nonparametric confidence intervals for quantiles

被引:14
|
作者
Zielinski, R
Zielinski, W
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw 10, Poland
[2] Agr Univ Warsaw, Dept Econometr & Comp Sci, PL-02787 Warsaw, Poland
关键词
confidence intervals; nonpararmetrics; quantiles;
D O I
10.1080/02331880412331329854
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Well-known nonparametric confidence intervals for quantiles are of the form (X-i:n, X-j:n) with suitably chosen order statistics X-i:n and X-j:n, but typically their coverage levels differ from those prescribed. It appears that the coverage level of the confidence interval of the form (X-i:n, X-j:n) with random indices I and J can be rendered equal, exactly to any predetermined level gamma epsilon (0, 1). Best in the sense of minimum E(J - I), i.e., 'the shortest', two-sided confidence intervals are constructed. If no twosided confidence interval exists for a given gamma, the most accurate one-sided confidence intervals are constructed.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [41] Monotone Nonparametric Regression and Confidence Intervals
    Strand, Matthew
    Zhang, Yu
    Swihart, Bruce J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 828 - 845
  • [42] DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR FUNCTIONS OF QUANTILES
    Arachchige, Chandima N. P. G.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) : 520 - 522
  • [43] Confidence intervals for quantiles based on samples of random sizes
    Al-Mutairi, Jazaa S.
    Raqab, Mohammad Z.
    [J]. STATISTICAL PAPERS, 2020, 61 (01) : 261 - 277
  • [44] Confidence intervals for extreme Pareto-type quantiles
    Buitendag, Sven
    Beirlant, Jan
    De Wet, Tertius
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 36 - 55
  • [45] Simultaneous Confidence Intervals for Several Quantiles of an Unknown Distribution
    Hayter, A. J.
    [J]. AMERICAN STATISTICIAN, 2014, 68 (01): : 56 - 62
  • [46] Smoothed empirical likelihood confidence intervals for the difference of quantiles
    Zhou, W
    Jing, BY
    [J]. STATISTICA SINICA, 2003, 13 (01) : 83 - 95
  • [47] Confidence Intervals of Quantiles in Hydrology Computed by an Analytical Method
    Khalidou M. Baâ
    Carlos Díaz-Delgado
    Alin Caârsteanu
    [J]. Natural Hazards, 2001, 24 : 1 - 12
  • [48] Iterated smoothed bootstrap confidence intervals for population quantiles
    Ho, YHS
    Lee, SMS
    [J]. ANNALS OF STATISTICS, 2005, 33 (01): : 437 - 462
  • [49] SMOOTHED EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR QUANTILES
    CHEN, SX
    HALL, P
    [J]. ANNALS OF STATISTICS, 1993, 21 (03): : 1166 - 1181
  • [50] Confidence intervals for quantiles using generalized lambda distributions
    Su, Steve
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (09) : 3324 - 3333