Nonparametric estimation of multivariate quantiles

被引:9
|
作者
Coblenz, M. [1 ]
Dyckerhoff, R. [2 ]
Grothe, O. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Operat Res, D-76131 Karlsruhe, Germany
[2] Univ Cologne, Inst Econometr & Stat, D-50923 Cologne, Germany
关键词
copulas; multivariate quantiles in hydrology; smoothed bootstrap; PLUG-IN ESTIMATION; RETURN PERIOD; RISK; BOOTSTRAP; COPULAS; DESIGN;
D O I
10.1002/env.2488
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In many applications of hydrology, quantiles provide important insights in the statistical problems considered. In this paper, we focus on the estimation of multivariate quantiles based on copulas. We provide a nonparametric estimation procedure for a notion of multivariate quantiles, which has been used in a series of papers. These quantiles are based on particular level sets of copulas and admit the usual probabilistic interpretation that a p-quantile comprises a probability mass p. We also explore the usefulness of a smoothed bootstrap in the estimation process. Our simulation results show that the nonparametric estimation procedure yields excellent results and that the smoothed bootstrap can be beneficially applied. The main purpose of our paper is to provide an easily applicable method for practitioners and applied researchers in domains such as hydrology and coastal engineering.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Nonparametric estimation of a maximum of quantiles
    Enss, Georg C.
    Goetz, Benedict
    Kohler, Michael
    Krzyzak, Adam
    Platz, Roland
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 3176 - 3192
  • [2] ESTIMATION OF QUANTILES IN CERTAIN NONPARAMETRIC MODELS
    REISS, RD
    [J]. ANNALS OF STATISTICS, 1980, 8 (01): : 87 - 105
  • [3] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [4] Nonparametric multivariate descriptive measures based on spatial quantiles
    Serfling, R
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (02) : 259 - 278
  • [5] Nonparametric estimation of quantiles for a class of stationary processes
    Chu Huang
    HanChao Wang
    ZhengYan Lin
    [J]. Science China Mathematics, 2015, 58 : 2621 - 2632
  • [6] Nonparametric estimation of quantiles for a class of stationary processes
    Huang Chu
    Wang HanChao
    Lin ZhengYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2621 - 2632
  • [7] Nonparametric kernel estimation of low flow quantiles
    Guo, SL
    Kachroo, RK
    Mngodo, RJ
    [J]. JOURNAL OF HYDROLOGY, 1996, 185 (1-4) : 335 - 348
  • [8] NONINFORMATIVE NONPARAMETRIC BAYESIAN-ESTIMATION OF QUANTILES
    MEEDEN, G
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 16 (02) : 103 - 109
  • [9] Nonparametric estimation of quantiles for a class of stationary processes
    HUANG Chu
    WANG HanChao
    LIN ZhengYan
    [J]. Science China Mathematics, 2015, 58 (12) : 2621 - 2632
  • [10] NONPARAMETRIC EMPIRICAL BAYES ESTIMATION OF EXTREME QUANTILES
    STEWART, TJ
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1986, 20 (02) : 194 - 195