Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles

被引:0
|
作者
Gilles Durrieu
Ion Grama
Quang-Khoai Pham
Jean-Marie Tricot
机构
[1] Université de Bretagne Sud,
[2] LMBA,undefined
来源
Extremes | 2015年 / 18卷
关键词
Nonparametric estimation; Tail conditional probabilities; Extreme conditional quantile; Adaptive estimation; Environment; 62G32; 62G08; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ft(x)=P(X≤x|T=t) be the conditional distribution of a random variable X given that a covariate T takes the value t∈[0,Tmax],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t \in [0,T_{\max }],$\end{document} where we assume that the distributions Ft are in the domain of attraction of the Fréchet distribution. We observe independent random variables Xt1,...,Xtn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{1}},...,X_{t_{n}}$\end{document} associated to a sequence of times 0≤t1<...<tn≤Tmax,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq t_{1}<...<t_{n}\leq T_{\max },$\end{document} where Xti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{t_{i}}$\end{document} has the distribution function Fti.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{t_{i}}.$\end{document} For each t∈[0,Tmax]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [0,T_{\max }]$\end{document}, we propose a nonparametric adaptive estimator for extreme tail probabilities and quantiles of Ft. It follows from the Fisher-Tippett-Gnedenko theorem that the tail of the distribution function Ft can be adjusted with a Pareto distribution of parameter 𝜃t,τ starting from a threshold τ. We estimate the parameter 𝜃t,τ using a nonparametric kernel estimator of bandwidth h based on the observations larger than τ and we propose a pointwise data driven procedure to choose the threshold τ. A global selection of the bandwidth h based on a cross-validation approach is given. Under some regularity assumptions, we prove that the non adaptive and adaptive estimators of 𝜃t,τ are consistent and we determine their rate of convergence. Finally, we study this procedure using simulations and we analyze an environmental data set.
引用
收藏
页码:437 / 478
页数:41
相关论文
共 50 条
  • [31] PROBABILITIES OF CONDITIONAL EVENTS
    SCHAY, G
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 694 - &
  • [32] ESTIMATION OF QUANTILES IN CERTAIN NONPARAMETRIC MODELS
    REISS, RD
    [J]. ANNALS OF STATISTICS, 1980, 8 (01): : 87 - 105
  • [33] Nonparametric estimation of quantiles by the kernel method
    Faucher, D.
    Rasmussen, P.F.
    Bobée, B.
    [J]. Revue des Sciences de l'Eau, 2002, 15 (02): : 515 - 541
  • [34] Extreme quantile estimation with nonparametric adaptive importance sampling
    Morio, Jerome
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2012, 27 : 76 - 89
  • [35] Efficient estimation of extreme quantiles using adaptive kriging and importance sampling
    Razaaly, Nassim
    Crommelin, Daan
    Congedo, Pietro Marco
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (09) : 2086 - 2105
  • [36] Forecasting conditional extreme quantiles for wind energy
    Goncalves, Carla
    Cavalcante, Laura
    Brito, Margarida
    Bessa, Ricardo J.
    Gama, Joao
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2021, 190
  • [37] Functional Kernel Estimators of Conditional Extreme Quantiles
    Gardes, Laurent
    Girard, Stephan
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 135 - 140
  • [38] Design-adaptive nonparametric estimation of conditional quantile derivatives
    Goh, S. C.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (03) : 597 - 612
  • [39] Estimation of extreme conditional quantiles under a general tail-first-order condition
    Gardes, Laurent
    Guillou, Armelle
    Roman, Claire
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (04) : 915 - 943
  • [40] Estimation of extreme conditional quantiles under a general tail-first-order condition
    Laurent Gardes
    Armelle Guillou
    Claire Roman
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 915 - 943