Bach-Flat Kähler Surfaces

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [31] Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds
    Calvino-Louzao, E.
    Garcia-Martinez, X.
    Garcia-Rio, E.
    Gutierrez-Rodriguez, I.
    Vazquez-Lorenzo, R.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 347 - 374
  • [32] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [33] ALE Ricci-flat Kähler surfaces and weighted projective spaces
    R. Răsdeaconu
    I. Şuvaina
    Annals of Global Analysis and Geometry, 2015, 47 : 117 - 134
  • [34] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [35] Some conformally invariant gap theorems for Bach-flat 4-manifolds
    Siyi Zhang
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [36] Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature
    Fu, Haiping
    Peng, Jianke
    HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (03) : 581 - 605
  • [37] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [38] Non-minimal scalar-flat Kähler surfaces and parabolic stability
    Yann Rollin
    Michael Singer
    Inventiones mathematicae, 2005, 162 : 235 - 270
  • [39] Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary
    Barros, A.
    Diogenes, R.
    Ribeiro, E., Jr.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2698 - 2715
  • [40] Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary
    A. Barros
    R. Diógenes
    E. Ribeiro
    The Journal of Geometric Analysis, 2015, 25 : 2698 - 2715