Bach-Flat Kähler Surfaces

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [11] BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS
    Calvino-Louzao, Esteban
    Garcia-Rio, Eduardo
    Gutierrez-Rodriguez, Ixchel
    Vazquez-Lorenzo, Ramon
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (01) : 75 - 99
  • [12] Bach-flat asymptotically locally Euclidean metrics
    Tian, G
    Viaclovsky, J
    INVENTIONES MATHEMATICAE, 2005, 160 (02) : 357 - 415
  • [13] RIGIDITY CHARACTERIZATIONS OF COMPLETE RIEMANNIAN MANIFOLDS WITH α-BACH-FLAT
    Huang, Guangyue
    Zeng, Qianyu
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 401 - 418
  • [14] Rigidity of generalized Bach-flat vacuum static spaces
    Yun, Gabjin
    Hwang, Seungsu
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 195 - 205
  • [15] Bach-flat critical metrics for quadratic curvature functionals
    Weimin Sheng
    Lisheng Wang
    Annals of Global Analysis and Geometry, 2018, 54 : 365 - 375
  • [16] A rigidity theorem for complete noncompact Bach-flat manifolds
    Chu, Yawei
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 516 - 521
  • [17] Bach-flat critical metrics for quadratic curvature functionals
    Sheng, Weimin
    Wang, Lisheng
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 365 - 375
  • [18] Bach-flat noncompact steady quasi-Einstein manifolds
    M. Ranieri
    E. Ribeiro
    Archiv der Mathematik, 2017, 108 : 507 - 519
  • [19] Formal power series for asymptotically hyperbolic Bach-flat metrics
    Alaee, Aghil
    Woolgar, Eric
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (12) : 3401 - 3425
  • [20] Rigidity of complete noncompact bach-flat n-manifolds
    Chu, Yawei
    Feng, Pinghua
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2227 - 2233