A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Huang, Guangyue
Zeng, Qianyu
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
机构:
Clark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA
Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USAClark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA
Alaee, Aghil
Woolgar, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaClark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA