Bach-Flat Kähler Surfaces

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [21] Formal power series for asymptotically hyperbolic Bach-flat metrics
    Aghil Alaee
    Eric Woolgar
    Letters in Mathematical Physics, 2020, 110 : 3401 - 3425
  • [22] Bach-flat noncompact steady quasi-Einstein manifolds
    Ranieri, M.
    Ribeiro, E., Jr.
    ARCHIV DER MATHEMATIK, 2017, 108 (05) : 507 - 519
  • [23] BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS
    Yun, Gabjin
    Co, Jinseok
    Hwang, Seungsu
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 475 - 488
  • [24] ASYMPTOTIC CURVATURE DECAY AND REMOVAL OF SINGULARITIES OF BACH-FLAT METRICS
    Streets, Jeffrey
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (03) : 1301 - 1324
  • [25] SOME REMARKS ON BACH-FLAT MANIFOLDS WITH POSITIVE CONSTANT SCALAR CURVATURE
    Fu, Hai-Ping
    Xu, Gao-Bo
    Tao, Yong-Qian
    COLLOQUIUM MATHEMATICUM, 2019, 155 (02) : 187 - 196
  • [26] A sphere theorem for Bach-flat manifolds with positive constant scalar curvature
    Fang, Yi
    Yuan, Wei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 64 : 80 - 91
  • [27] New locally (super)conformal gauge models in Bach-flat backgrounds
    Sergei M. Kuzenko
    Michael Ponds
    Emmanouil S. N. Raptakis
    Journal of High Energy Physics, 2020
  • [28] Rigidity theorem for compact Bach-flat manifolds with positive constant σ2
    He, Hui-Ya
    Fu, Hai-Ping
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [29] Some conformally invariant gap theorems for Bach-flat 4-manifolds
    Zhang, Siyi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [30] New locally (super)conformal gauge models in Bach-flat backgrounds
    Kuzenko, Sergei M.
    Ponds, Michael
    Raptakis, Emmanouil S. N.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)