A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
机构:
Myong Ji Univ, Dept Math, San 38-2 Namdong, Yongin 449728, Gyeonggi, South KoreaMyong Ji Univ, Dept Math, San 38-2 Namdong, Yongin 449728, Gyeonggi, South Korea
Yun, Gabjin
Co, Jinseok
论文数: 0引用数: 0
h-index: 0
机构:
Chung Ang Univ, Dept Math, 84 Heukseok Ro, Seoul 06969, South KoreaMyong Ji Univ, Dept Math, San 38-2 Namdong, Yongin 449728, Gyeonggi, South Korea
机构:
Anhui Univ Technol, Dept Appl Math, Maanshan 243002, Anhui, Peoples R ChinaAnhui Univ Technol, Dept Appl Math, Maanshan 243002, Anhui, Peoples R China
Fang, Yi
Yuan, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaAnhui Univ Technol, Dept Appl Math, Maanshan 243002, Anhui, Peoples R China