Characterisation of homogeneous fractional Sobolev spaces

被引:0
|
作者
Lorenzo Brasco
David Gómez-Castro
Juan Luis Vázquez
机构
[1] Università degli Studi di Ferrara,Dipartimento di Matematica e Informatica
[2] University of Oxford,Mathematical Institute
[3] Universidad Complutense de Madrid,Instituto de Matemática Interdisciplinar
[4] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to characterize the homogeneous fractional Sobolev–Slobodeckiĭ spaces Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p} (\mathbb {R}^n)$$\end{document} and their embeddings, for s∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1]$$\end{document} and p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. They are defined as the completion of the set of smooth and compactly supported test functions with respect to the Gagliardo–Slobodeckiĭ seminorms. For sp<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p < n$$\end{document} or s=p=n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = p = n = 1$$\end{document} we show that Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p}(\mathbb {R}^n)$$\end{document} is isomorphic to a suitable function space, whereas for sp≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p \ge n$$\end{document} it is isomorphic to a space of equivalence classes of functions, differing by an additive constant. As one of our main tools, we present a Morrey–Campanato inequality where the Gagliardo–Slobodeckiĭ seminorm controls from above a suitable Campanato seminorm.
引用
收藏
相关论文
共 50 条