共 50 条
Characterisation of homogeneous fractional Sobolev spaces
被引:0
|作者:
Lorenzo Brasco
David Gómez-Castro
Juan Luis Vázquez
机构:
[1] Università degli Studi di Ferrara,Dipartimento di Matematica e Informatica
[2] University of Oxford,Mathematical Institute
[3] Universidad Complutense de Madrid,Instituto de Matemática Interdisciplinar
[4] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源:
Calculus of Variations and Partial Differential Equations
|
2021年
/
60卷
关键词:
46E35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Our aim is to characterize the homogeneous fractional Sobolev–Slobodeckiĭ spaces Ds,p(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {D}^{s,p} (\mathbb {R}^n)$$\end{document} and their embeddings, for s∈(0,1]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s \in (0,1]$$\end{document} and p≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\ge 1$$\end{document}. They are defined as the completion of the set of smooth and compactly supported test functions with respect to the Gagliardo–Slobodeckiĭ seminorms. For sp<n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s\,p < n$$\end{document} or s=p=n=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s = p = n = 1$$\end{document} we show that Ds,p(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {D}^{s,p}(\mathbb {R}^n)$$\end{document} is isomorphic to a suitable function space, whereas for sp≥n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s\,p \ge n$$\end{document} it is isomorphic to a space of equivalence classes of functions, differing by an additive constant. As one of our main tools, we present a Morrey–Campanato inequality where the Gagliardo–Slobodeckiĭ seminorm controls from above a suitable Campanato seminorm.
引用
收藏
相关论文