Embeddings of homogeneous Sobolev spaces on the entire space

被引:7
|
作者
Mihula, Zdenek [1 ]
机构
[1] Charles Univ Prague, Dept Math Anal, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Optimal function spaces; Rearrangement-invariant spaces; Reduction principle; Sobolev spaces; INTERPOLATION; OPERATORS; FUNCTIONALS; IMBEDDINGS; THEOREM;
D O I
10.1017/prm.2020.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We completely characterize the validity of the inequality parallel to u parallel to(Y(Rn)) <= C parallel to del(m)u parallel to(X(Rn)), where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
引用
收藏
页码:296 / 328
页数:33
相关论文
共 50 条
  • [1] OPTIMAL EMBEDDINGS OF GENERALIZED HOMOGENEOUS SOBOLEV SPACES
    Ahmed, Irshaad
    Karadzhov, Georgi Eremiev
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 1 - 20
  • [2] Optimal embeddings of generalized homogeneous Sobolev spaces
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (08): : 967 - 972
  • [3] SHARP SOBOLEV TYPE EMBEDDINGS ON THE ENTIRE EUCLIDEAN SPACE
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2011 - 2037
  • [4] Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings
    Romanovskii, N. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (02) : 353 - 367
  • [5] Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings
    N. N. Romanovskiĭ
    [J]. Siberian Mathematical Journal, 2013, 54 : 353 - 367
  • [6] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [7] EMBEDDINGS OF ANISOTROPIC SOBOLEV SPACES
    EDMUNDS, DE
    EDMUNDS, RM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 94 (03) : 245 - 252
  • [8] Embeddings of anisotropic Besov spaces into Sobolev spaces
    Bartusel, David
    Fuehr, Hartmut
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1380 - 1393
  • [9] Embeddings of shearlet coorbit spaces into Sobolev spaces
    Fuhr, Hartmut
    Koch, Rene
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (03)
  • [10] Approximation numbers of embeddings of Sobolev spaces
    Edmunds, DE
    Ilyin, AA
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (02) : 177 - 187