Characterisation of homogeneous fractional Sobolev spaces

被引:0
|
作者
Lorenzo Brasco
David Gómez-Castro
Juan Luis Vázquez
机构
[1] Università degli Studi di Ferrara,Dipartimento di Matematica e Informatica
[2] University of Oxford,Mathematical Institute
[3] Universidad Complutense de Madrid,Instituto de Matemática Interdisciplinar
[4] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to characterize the homogeneous fractional Sobolev–Slobodeckiĭ spaces Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p} (\mathbb {R}^n)$$\end{document} and their embeddings, for s∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1]$$\end{document} and p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. They are defined as the completion of the set of smooth and compactly supported test functions with respect to the Gagliardo–Slobodeckiĭ seminorms. For sp<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p < n$$\end{document} or s=p=n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = p = n = 1$$\end{document} we show that Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p}(\mathbb {R}^n)$$\end{document} is isomorphic to a suitable function space, whereas for sp≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p \ge n$$\end{document} it is isomorphic to a space of equivalence classes of functions, differing by an additive constant. As one of our main tools, we present a Morrey–Campanato inequality where the Gagliardo–Slobodeckiĭ seminorm controls from above a suitable Campanato seminorm.
引用
收藏
相关论文
共 50 条
  • [41] Sobolev Embeddings for Fractional Hajlasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Martin, Joaquim
    Ortiz, Walter A.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1191 - 1204
  • [42] Optimal embeddings of generalized homogeneous Sobolev spaces
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (08): : 967 - 972
  • [43] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [44] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [45] Weighted fractional Sobolev spaces as interpolation spaces in bounded domains
    Acosta, Gabriel
    Drelichman, Irene
    Duran, Ricardo G. G.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4374 - 4385
  • [46] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [47] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [48] Pointwise inequalities and approximation in fractional Sobolev spaces
    Swanson, D
    STUDIA MATHEMATICA, 2002, 149 (02) : 147 - 174
  • [49] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240
  • [50] Multipliers between Sobolev spaces and fractional differentiation
    Lemarie-Rieusset, P. G.
    Gala, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 1030 - 1054