Permutable subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
J. C. Beidleman
John Cossey
R. Esteban-Romero
M. F. Ragland
Jack Schmidt
机构
[1] Universitat de València,Departament d’ Àlgebra
[2] University of Kentucky,Department of Mathematics, 745 Patterson Office Tower
[3] Australian National University,Mathematics Department, Mathematical Sciences Institute
[4] Universitat Politècnica de València,Institut Universitari de Matemàtica Pura i Aplicada
[5] Auburn University Montgomery,Department of Mathematics
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Permutable; subnormal; -group; conjugate-permutable; modular ; -group; Primary 20D10, 20D20, 20D35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups. In particular, it is shown that the finite solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugate-permutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalently, in which every normal subgroup is permutable sensitive. However, there exist finite insolvable groups which are not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups but all subnormal subgroups of defect two are permutable.
引用
收藏
页码:549 / 557
页数:8
相关论文
共 50 条
  • [41] Finite Groups with σ-Subnormal Schmidt Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Yi, X.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2431 - 2440
  • [42] On generalised subnormal subgroups of finite groups
    A. Ballester-Bolinches
    S. F. Kamornikov
    V. N. Tyutyanov
    Ricerche di Matematica, 2022, 71 : 205 - 209
  • [43] On σ-subnormal subgroups of factorised finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Pedraza-Aguilera, M. C.
    Yi, X.
    JOURNAL OF ALGEBRA, 2020, 559 : 195 - 202
  • [44] Finite groups with subgroups supersoluble or subnormal
    Ballester-Bolinchesa, A.
    Cossey, John
    JOURNAL OF ALGEBRA, 2009, 321 (07) : 2042 - 2052
  • [45] On ?-subnormal subgroups and products of finite groups
    Heliel, A. A.
    Ballester-Bolinches, A.
    Al-Shomrani, M. M.
    Al-Obidy, R. A.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 770 - 775
  • [46] Finite groups with subnormal Schmidt subgroups
    V. A. Vedernikov
    Algebra and Logic, 2007, 46 : 363 - 372
  • [47] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF SURGICAL ONCOLOGY, 2023, : 595 - 610
  • [48] Finite Groups with Subnormal Schmidt Subgroups
    V. N. Knyagina
    V. S. Monakhov
    Siberian Mathematical Journal, 2004, 45 : 1075 - 1079
  • [49] Finite Groups with ℙ-Subnormal Sylow Subgroups
    V. N. Kniahina
    V. S. Monakhov
    Ukrainian Mathematical Journal, 2021, 72 : 1571 - 1578
  • [50] On 𝜎-Subnormal Subgroups of Finite 3'-Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    Ukrainian Mathematical Journal, 2020, 72 : 935 - 941