On σ-subnormal subgroups of factorised finite groups

被引:7
|
作者
Ballester-Bolinches, A. [1 ,2 ]
Kamornikov, S. F. [3 ]
Pedraza-Aguilera, M. C. [4 ]
Yi, X. [5 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Peoples R China
[2] Univ Valencia, Dept Matemat, Dr Moliner 50, Valencia 46100, Spain
[3] F Scorina Gomel State Univ, Dept Math, Gomel 246019, BELARUS
[4] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera, Valencia 46022, Spain
[5] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Finite group; Soluble group; sigma-Subnormal subgroup; sigma-Nilpotency; Factorised group;
D O I
10.1016/j.jalgebra.2020.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = {sigma(i) : i is an element of I} be a partition of the set P of all prime numbers. A subgroup X of a finite group G is called sigma-subnormal in G if there is chain of subgroups X = X-0 subset of X-1 subset of ... subset of X-n = G with Xi-1 normal in X-i or X-i/Core(Xi)(Xi-1) is a a sigma(i)-group for some i is an element of I, 1 <= i <= n. In the special case that sigma is the partition of P into sets containing exactly one prime each, the sigma-subnormality reduces to the familiar case of subnormality. If a finite soluble group G = AB is factorised as the product of the subgroups A and B, and X is a subgroup of G such that X is sigma-subnormal in < X, X-g > for all g is an element of A boolean OR B, we prove that X is sigma-subnormal in G. This is an extension of a subnormality criteria due to Maier and Sidki and Casolo. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 50 条
  • [1] Finite Factorised Groups with Partially Solvable P-Subnormal Subgroups
    Monakhov, V.
    Kniahina, V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (04) : 441 - 445
  • [2] On Finite Groups Factorised by Submodular Subgroups
    Monakhov, Victor S.
    Sokhor, Irina L.
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [3] On σ-Subnormal Subgroups of Finite Groups
    S. F. Kamornikov
    V. N. Tyutyanov
    [J]. Siberian Mathematical Journal, 2020, 61 : 266 - 270
  • [4] On σ-Subnormal Subgroups of Finite Groups
    Kamornikov, S. F.
    Tyutyanov, V. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) : 266 - 270
  • [5] On σ-Subnormal Subgroups of Finite Groups
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (06) : 813 - 824
  • [6] FINITE GROUPS WITH WEAKLY SUBNORMAL AND PARTIALLY SUBNORMAL SUBGROUPS
    Huang, J.
    Hu, B.
    Skiba, A. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 169 - 177
  • [7] Finite Groups with Weakly Subnormal and Partially Subnormal Subgroups
    J. Huang
    B. Hu
    A. N. Skiba
    [J]. Siberian Mathematical Journal, 2021, 62 : 169 - 177
  • [8] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    [J]. ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [9] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    [J]. JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610
  • [10] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    [J]. MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432