Permutable subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
J. C. Beidleman
John Cossey
R. Esteban-Romero
M. F. Ragland
Jack Schmidt
机构
[1] Universitat de València,Departament d’ Àlgebra
[2] University of Kentucky,Department of Mathematics, 745 Patterson Office Tower
[3] Australian National University,Mathematics Department, Mathematical Sciences Institute
[4] Universitat Politècnica de València,Institut Universitari de Matemàtica Pura i Aplicada
[5] Auburn University Montgomery,Department of Mathematics
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Permutable; subnormal; -group; conjugate-permutable; modular ; -group; Primary 20D10, 20D20, 20D35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups. In particular, it is shown that the finite solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugate-permutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalently, in which every normal subgroup is permutable sensitive. However, there exist finite insolvable groups which are not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups but all subnormal subgroups of defect two are permutable.
引用
收藏
页码:549 / 557
页数:8
相关论文
共 50 条
  • [21] Finite groups with permutable Hall subgroups
    Yin, Xia
    Yang, Nanying
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (05) : 1265 - 1275
  • [22] On σ-conditionally permutable subgroups of finite groups
    Mao, Yuemei
    Cao, Chenchen
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 4271 - 4282
  • [23] On σ-Subnormal Subgroups of Finite Groups
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (06) : 813 - 824
  • [24] On permutable subgroups of finite groups II
    Li, YM
    Heliel, AA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3353 - 3358
  • [25] On weakly σ-permutable subgroups of finite groups
    Zhang, Chi
    Wu, Zhenfeng
    Guo, Wenbin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 489 - 502
  • [26] Finite groups with permutable Hall subgroups
    Xia Yin
    Nanying Yang
    Frontiers of Mathematics in China, 2017, 12 : 1265 - 1275
  • [27] On Sylow permutable subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Heineken, Hermann
    Spagnuolo, Francesca
    FORUM MATHEMATICUM, 2017, 29 (06) : 1307 - 1310
  • [28] FINITE GROUPS WITH WEAKLY SUBNORMAL AND PARTIALLY SUBNORMAL SUBGROUPS
    Huang, J.
    Hu, B.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 169 - 177
  • [29] Finite Groups with Weakly Subnormal and Partially Subnormal Subgroups
    J. Huang
    B. Hu
    A. N. Skiba
    Siberian Mathematical Journal, 2021, 62 : 169 - 177
  • [30] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610