On permutable subgroups of finite groups II

被引:8
|
作者
Li, YM
Heliel, AA [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[2] Guangdong Coll Educ, Dept Math, Guangzhou, Peoples R China
[3] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
B-permutable subgroups; saturated formations; supersolvable groups; the generalized fitting subgroup;
D O I
10.1081/AGB-200058541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let beta be a complete set of Sylow subgroups of a finite group G, that is, beta contains exactly one and only one Sylow p-subgroup of G for each prime p. A subgroup H of a finite group G is said to be Beta-permutable if H permutes with every member of Beta. The purpose of this article is to study the influence of Beta-permutability of all maximal subgroups of the Sylow subgroups of the generalized Fitting subgroup of some normal subgroup of a finite group G on the structure of G. Our results improve and extend the main results of Asaad (1998), Asaad and Heliel (2003), Asaad et al. (1991), Li et al. (2003), Ramadan (1992), and Srinivasan (1980).
引用
收藏
页码:3353 / 3358
页数:6
相关论文
共 50 条
  • [1] ON Π-PERMUTABLE SUBGROUPS IN FINITE GROUPS
    Hu, B.
    Huang, J.
    Adarchenko, N. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (10) : 1643 - 1653
  • [2] Sylow permutable subnormal subgroups of finite groups II
    Ballester-Bolinches, A
    Esteban-Romero, R
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (03) : 479 - 486
  • [3] On Π-Permutable Subgroups in Finite Groups
    B. Hu
    J. Huang
    N. M. Adarchenko
    Ukrainian Mathematical Journal, 2022, 73 : 1643 - 1653
  • [4] -permutable subgroups of finite groups
    Heliel, A. A.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Almestady, M. O.
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04): : 523 - 534
  • [5] On permutable subgroups of finite groups
    M. Asaad
    A. A. Heliel
    Archiv der Mathematik, 2003, 80 : 113 - 118
  • [6] On permutable subgroups of finite groups
    Asaad, M
    Heliel, AA
    ARCHIV DER MATHEMATIK, 2003, 80 (02) : 113 - 118
  • [7] On weakly 3-permutable subgroups of finite groups II
    Heliel, A. A.
    Al-Shomrani, M. M.
    Al-Gafri, T. M.
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (01) : 63 - 68
  • [8] Cyclic permutable subgroups of finite groups
    Cossey, J
    Stonehewer, SE
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 169 - 176
  • [9] Finite groups with permutable Hall subgroups
    Yin, Xia
    Yang, Nanying
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (05) : 1265 - 1275
  • [10] On σ-conditionally permutable subgroups of finite groups
    Mao, Yuemei
    Cao, Chenchen
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 4271 - 4282