Permutable subnormal subgroups of finite groups

被引:0
|
作者
A. Ballester-Bolinches
J. C. Beidleman
John Cossey
R. Esteban-Romero
M. F. Ragland
Jack Schmidt
机构
[1] Universitat de València,Departament d’ Àlgebra
[2] University of Kentucky,Department of Mathematics, 745 Patterson Office Tower
[3] Australian National University,Mathematics Department, Mathematical Sciences Institute
[4] Universitat Politècnica de València,Institut Universitari de Matemàtica Pura i Aplicada
[5] Auburn University Montgomery,Department of Mathematics
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Permutable; subnormal; -group; conjugate-permutable; modular ; -group; Primary 20D10, 20D20, 20D35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups. In particular, it is shown that the finite solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugate-permutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalently, in which every normal subgroup is permutable sensitive. However, there exist finite insolvable groups which are not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{PT}}$$\end{document}-groups but all subnormal subgroups of defect two are permutable.
引用
收藏
页码:549 / 557
页数:8
相关论文
共 50 条
  • [31] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432
  • [32] Finite groups with subnormal Schmidt subgroups
    Vedernikov, V. A.
    ALGEBRA AND LOGIC, 2007, 46 (06) : 363 - 372
  • [33] Finite groups with abnormal and -subnormal subgroups
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) : 352 - 363
  • [34] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 205 - 209
  • [35] On weakly s*-permutable subgroups of finite groups
    Lv, Yubo
    Li, Yangming
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 187 - 202
  • [36] On the products of ℙ-subnormal subgroups of finite groups
    A. F. Vasil’ev
    V. N. Tyutyanov
    T. I. Vasil’eva
    Siberian Mathematical Journal, 2012, 53 : 47 - 54
  • [37] On finite groups with σ-subnormal Schmidt subgroups
    Al-Sharo, Khaled A.
    Skiba, Alexander N.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4158 - 4165
  • [38] Finite groups with σ-subnormal Schmidt subgroups
    Yi, Xiaolan
    Kamornikov, S. F.
    JOURNAL OF ALGEBRA, 2020, 560 : 181 - 191
  • [39] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, James
    Feldman, A. D.
    Ragland, M. F.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1066 - 1071
  • [40] On Generalized σ-Subnormal Subgroups of Finite Groups
    Hussain, Muhammad Tanveer
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2023, 16 : 81 - 89