A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems

被引:0
|
作者
Wang, Jindong [1 ]
Wu, Shuonan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
北京市自然科学基金;
关键词
Hybridizable discontinuous Galerkin; Magnetic advection-diffusion; Degenearate Friedrichs system; Local postprocessing; FINITE-ELEMENT-METHOD; RESIDUAL-FREE BUBBLES; DEGREE HDG METHODS; STABILIZED GALERKIN; ERROR ANALYSIS; A-PRIORI; APPROXIMATIONS; EQUATIONS;
D O I
10.1007/s10915-024-02540-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a hybridizable discontinuous Galerkin (HDG) method for solving a mixed magnetic advection-diffusion problem within a more general Friedrichs system framework. With carefully constructed numerical traces, we introduce two distinct stabilization parameters: tau t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _t$$\end{document} for the tangential trace and tau n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _n$$\end{document} for the normal trace. These parameters are tailored to satisfy different requirements, ensuring the stability and convergence of the method. Furthermore, we incorporate a weight function to facilitate the establishment of stability conditions. We also investigate an elementwise postprocessing technique that proves to be effective for both two-dimensional and three-dimensional problems in terms of broken H(curl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{H}}(\textrm{curl})$$\end{document} semi-norm accuracy improvement. Extensive numerical examples are presented to showcase the performance and effectiveness of the HDG method and the postprocessing techniques.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for magnetic advection-diffusion problems
    Wang, Jindong
    Wu, Shuonan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 43 - 54
  • [2] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Bernardo Cockburn
    Kassem Mustapha
    [J]. Numerische Mathematik, 2015, 130 : 293 - 314
  • [3] A high-order discontinuous Galerkin method for unsteady advection-diffusion problems
    Borker, Raunak
    Farhat, Charbel
    Tezaur, Radek
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 332 : 520 - 537
  • [4] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [5] A STABILIZED DISCONTINUOUS GALERKIN METHOD FOR THE NONLINEAR ADVECTION-DIFFUSION PROCESSES
    Tunc, Huseyin
    Sari, Murat
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (01): : 24 - 45
  • [6] A high-order discontinuous Galerkin method with Lagrange multipliers for advection-diffusion problems
    Brogniez, S.
    Farhat, C.
    Hachem, E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 264 : 49 - 66
  • [7] A discontinuous Galerkin method with Lagrange multipliers for spatially-dependent advection-diffusion problems
    Borker, Raunak
    Farhat, Charbel
    Tezaur, Radek
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 93 - 117
  • [8] ANALYSIS OF A SPACE-TIME HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE ADVECTION-DIFFUSION PROBLEM ON TIME-DEPENDENT DOMAINS
    Kirk, K. L. A.
    Horvath, T. L.
    Cesmelioglu, A.
    Rhebergen, S.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1677 - 1696
  • [9] Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales
    Abdulle, A.
    Huber, M. E.
    [J]. NUMERISCHE MATHEMATIK, 2014, 126 (04) : 589 - 633
  • [10] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Wenyu Lei
    Stefano Piani
    Patricio Farrell
    Nella Rotundo
    Luca Heltai
    [J]. Journal of Scientific Computing, 2024, 99