ANALYSIS OF A SPACE-TIME HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE ADVECTION-DIFFUSION PROBLEM ON TIME-DEPENDENT DOMAINS

被引:7
|
作者
Kirk, K. L. A. [1 ]
Horvath, T. L. [1 ]
Cesmelioglu, A. [2 ]
Rhebergen, S. [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
基金
加拿大自然科学与工程研究理事会;
关键词
space-time; hybridized; discontinuous Galerkin; advection-diffusion equations; time-dependent domains; FINITE-ELEMENT-METHOD; NAVIER-STOKES EQUATIONS;
D O I
10.1137/18M1202049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the first analysis of a space-time hybridizable discontinuous Galerkin method for the advection-diffusion problem on time-dependent domains. The analysis is based on nonstandard local trace and inverse inequalities that are anisotropic in the spatial and time-steps. We prove well-posedness of the discrete problem and provide a priori error estimates in a mesh-dependent norm. Convergence theory is validated by a numerical example solving the advection-diffusion problem on a time-dependent domain for approximations of various polynomial degrees.
引用
收藏
页码:1677 / 1696
页数:20
相关论文
共 50 条