On the stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains

被引:0
|
作者
Monika Balázsová
Miloslav Feistauer
机构
[1] Charles University in Prague,Faculty of Mathematics and Physics
来源
关键词
nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability; 65M60; 65M99;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than p with an integer p ⩾ 1. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.
引用
收藏
页码:501 / 526
页数:25
相关论文
共 50 条
  • [1] ON THE STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    [J]. APPLICATIONS OF MATHEMATICS, 2015, 60 (05) : 501 - 526
  • [2] STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    Vlasak, Miloslav
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2327 - 2356
  • [3] The Discontinuous Galerkin Method for Convection-Diffusion Problems in Time-Dependent Domains
    Kucera, Vaclav
    Feistauer, Miloslav
    Prokopova, Jaroslava
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 551 - 559
  • [4] Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    [J]. NUMERISCHE MATHEMATIK, 2011, 117 (02) : 251 - 288
  • [5] STABILITY ANALYSIS OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    [J]. Programs and Algorithms of Numerical Mathematics 17, 2015, : 9 - 16
  • [6] On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 211 - 233
  • [7] Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains
    Sudirham, J. J.
    van der Vegt, J. J. W.
    van Damme, R. M. J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (12) : 1491 - 1518
  • [8] ON THE UNIFORM STABILITY OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    [J]. PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 84 - 92
  • [9] A Priori Error Estimates of an Extrapolated Space-Time Discontinuous Galerkin Method for Nonlinear Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    Hajek, J.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1456 - 1482
  • [10] STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD
    Vlasak, Miloslav
    Balazsova, Monika
    Feistauer, Miloslav
    [J]. PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 237 - 246