A space-time discontinuous Galerkin method for the time-dependent Oseen equations

被引:29
|
作者
van der Vegt, J. J. W. [1 ]
Sudirham, J. J. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
关键词
Space-time discontinuous Galerkin method; Oseen equations; Stability; hp-error analysis; ALE methods;
D O I
10.1016/j.apnum.2007.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space-time discontinuous Galerkin finite element method for the Oseen equations on time-dependent flow domains is presented. The algorithm results in a higher order accurate conservative discretization on moving and deforming meshes and is well suited for hp-adaptation. A detailed analysis of the stability of the numerical discretization is given which shows that the algorithm is unconditionally stable, also when equal order polynomial basis functions for the pressure and velocity are used. The accuracy of the space-time discretization is investigated using a detailed lip-error analysis and computations on a model problem. (C) 2007 IMACS. Published by Elsevier B.V. All fights reserved.
引用
收藏
页码:1892 / 1917
页数:26
相关论文
共 50 条
  • [1] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [2] Non-dissipative space-time hp-discontinuous Galerkin method for the time-dependent Maxwell equations
    Lilienthal, M.
    Schnepp, S. M.
    Weiland, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 589 - 607
  • [3] Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains
    Sudirham, J. J.
    van der Vegt, J. J. W.
    van Damme, R. M. J.
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (12) : 1491 - 1518
  • [4] ON THE UNIFORM STABILITY OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 84 - 92
  • [5] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939
  • [6] ANALYSIS OF AN EXACTLY MASS CONSERVING SPACE-TIME HYBRIDIZED DISCONTINUOUS GALERKIN METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    Kirk, Keegan
    Horvath, Tamas
    Rhebergen, Sander
    MATHEMATICS OF COMPUTATION, 2023, 92 (340) : 525 - 556
  • [7] A space-time discontinuous Galerkin method for Boussinesq-type equations
    Dumbser, M.
    Facchini, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 336 - 346
  • [8] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    汪波
    谢资清
    张智民
    Acta Mathematica Scientia, 2014, 34 (05) : 1357 - 1376
  • [9] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    Wang, Bo
    Xie, Ziqing
    Zhang, Zhimin
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1357 - 1376
  • [10] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 825 - 836