Space-Time Discontinuous Galerkin Method for Maxwell's Equations

被引:12
|
作者
Xie, Ziqing [1 ,2 ]
Wang, Bo [3 ,4 ]
Zhang, Zhimin [5 ,6 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Guizhou, Peoples R China
[2] Hunan Normal Univ, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
[3] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[4] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117576, Singapore
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[6] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; Maxwell's equations; full-discretization; L-2-error estimate; L-2-stability; ultra-convergence; FINITE-ELEMENT-METHOD; ERROR ANALYSIS; BOUNDARY; SCHEMES;
D O I
10.4208/cicp.230412.271212a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell's equations. Distinguished from the Runge-Kutta discontinuous Galerkin method (RKDG) and the finite element time domain method (FETD), in our scheme, discontinuous Galerkin methods are used to discretize not only the spatial domain but also the temporal domain. The proposed numerical scheme is proved to be unconditionally stable, and a convergent rate O((Delta t)(r+1)+h(k+1/2)) is established under the L-2-norm when polynomials of degree at most r and k are used for temporal and spatial approximation, respectively. Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction. An ultra-convergence of order (Delta t)(2r+1) in time step is observed numerically for the numerical fluxes w.r.t. temporal variable at the grid points.
引用
收藏
页码:916 / 939
页数:24
相关论文
共 50 条
  • [1] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [2] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [3] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    汪波
    谢资清
    张智民
    [J]. Acta Mathematica Scientia, 2014, 34 (05) : 1357 - 1376
  • [4] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    Wang, Bo
    Xie, Ziqing
    Zhang, Zhimin
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1357 - 1376
  • [5] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [6] A space-time discontinuous Galerkin method for Boussinesq-type equations
    Dumbser, M.
    Facchini, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 336 - 346
  • [7] Non-dissipative space-time hp-discontinuous Galerkin method for the time-dependent Maxwell equations
    Lilienthal, M.
    Schnepp, S. M.
    Weiland, T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 589 - 607
  • [8] A space-time discontinuous Galerkin method for the time-dependent Oseen equations
    van der Vegt, J. J. W.
    Sudirham, J. J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) : 1892 - 1917
  • [9] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 825 - 836
  • [10] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    Siriguleng He
    Hong Li
    Yang Liu
    [J]. Frontiers of Mathematics in China, 2013, 8 : 825 - 836