Space-Time Discontinuous Galerkin Method for Maxwell's Equations

被引:12
|
作者
Xie, Ziqing [1 ,2 ]
Wang, Bo [3 ,4 ]
Zhang, Zhimin [5 ,6 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Guizhou, Peoples R China
[2] Hunan Normal Univ, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
[3] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[4] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117576, Singapore
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[6] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; Maxwell's equations; full-discretization; L-2-error estimate; L-2-stability; ultra-convergence; FINITE-ELEMENT-METHOD; ERROR ANALYSIS; BOUNDARY; SCHEMES;
D O I
10.4208/cicp.230412.271212a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell's equations. Distinguished from the Runge-Kutta discontinuous Galerkin method (RKDG) and the finite element time domain method (FETD), in our scheme, discontinuous Galerkin methods are used to discretize not only the spatial domain but also the temporal domain. The proposed numerical scheme is proved to be unconditionally stable, and a convergent rate O((Delta t)(r+1)+h(k+1/2)) is established under the L-2-norm when polynomials of degree at most r and k are used for temporal and spatial approximation, respectively. Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction. An ultra-convergence of order (Delta t)(2r+1) in time step is observed numerically for the numerical fluxes w.r.t. temporal variable at the grid points.
引用
收藏
页码:916 / 939
页数:24
相关论文
共 50 条
  • [41] A space-time discontinuous Petrov-Galerkin method for acoustic waves
    Ernesti, Johannes
    Wieners, Christian
    [J]. SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 89 - 115
  • [42] A SPACE-TIME DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR THE STEFAN PROBLEM
    Pei, Chaoxu
    Sussman, Mark
    Hussaini, M. Yousuff
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3595 - 3622
  • [43] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [44] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [45] Tensor-Product Preconditioners for a Space-Time Discontinuous Galerkin Method
    Diosady, Laslo T.
    Murman, Scott M.
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 946 - 949
  • [46] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [47] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [48] A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
    Zhang, Tie
    Liu, Jingna
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 665 - 678
  • [49] TEMPORAL CONVERGENCE OF A LOCALLY IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR MAXWELL'S EQUATIONS
    Moya, Ludovic
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 1225 - 1246
  • [50] Interior Penalty Discontinuous Galerkin Method for Maxwell’s Equations in Cold Plasma
    Yunqing Huang
    Jichun Li
    [J]. Journal of Scientific Computing, 2009, 41 : 321 - 340