A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION

被引:5
|
作者
GOMEZ, S. E. R. G. I. O. [1 ]
MOIOLA, A. N. D. R. E. A. [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
linear Schrodinger equation; Trefftz method; discontinuous Galerkin method; a priori error estimate; h-convergence; nonpolynomial basis functions;
D O I
10.1137/21M1426079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space-time Trefftz discontinuous Galerkin method for the Schrodinger equation with piecewise-constant potential is proposed and analyzed. Following the spirit of Trefftz methods, trial and test spaces are spanned by nonpolynomial complex wave functions that satisfy the Schrodinger equation locally on each element of the space-time mesh. This allows for a significant reduction in the number of degrees of freedom in comparison with full polynomial spaces. We prove well-posedness and stability of the method and, for the one- and two-dimensional cases, optimal, high-order, h-convergence error estimates in a skeleton norm. Some numerical experiments validate the theoretical results presented.
引用
收藏
页码:688 / 714
页数:27
相关论文
共 50 条
  • [1] A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION
    Banjai, Lehel
    Georgoulis, Emmanuil H.
    Lijoka, Oluwaseun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 63 - 86
  • [2] A space-time finite element method for the nonlinear Schrodinger equation: The discontinuous Galerkin method
    Karakashian, O
    Makridakis, C
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 479 - 499
  • [3] A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
    Moiola, Andrea
    Perugia, Ilaria
    [J]. NUMERISCHE MATHEMATIK, 2018, 138 (02) : 389 - 435
  • [4] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [5] Space-time discontinuous Galerkin method for linear elastodynamics
    Aksoy, H. G.
    Senocak, E.
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2007, 20 (02) : 128 - 131
  • [6] A space-time discontinuous Galerkin discretization for the linear transport equation
    Wieners, Christian
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 294 - 307
  • [7] A space-time discontinuous Galerkin method for the elastic wave equation
    Antonietti, Paola F.
    Mazzieri, Ilario
    Migliorini, Francesco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [8] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [9] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [10] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944