A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION

被引:20
|
作者
Banjai, Lehel [1 ]
Georgoulis, Emmanuil H. [2 ,3 ]
Lijoka, Oluwaseun [4 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
[3] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Math, Zografos 15780, Greece
[4] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
space-time methods; discontinuous Galerkin; Trefftz; wave equation; FINITE-ELEMENT METHODS;
D O I
10.1137/16M1065744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new space-time discontinuous Galerkin (dG) method utilizing special Trefftz polynomial basis functions is proposed and fully analyzed for the scalar wave equation in a second order formulation. The dG method considered is motivated by the class of interior penalty dG methods, as well as by the classical work of Hughes and Hulbert [Comput. Methods Appl. Mech. Engrg., 66 (1988), pp. 339-363; Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 327-348]. The choice of the penalty terms included in the bilinear form is essential for both the theoretical analysis and for the practical behavior of the method for the case of lowest order basis functions. A best approximation result is proven for this new space-time dG method with Trefftz-type basis functions. Rates of convergence are proved in any dimension and verified numerically in spatial dimensions d = 1 and d = 2. Numerical experiments highlight the effectivness of the Trefftz method in problems with energy at high frequencies.
引用
收藏
页码:63 / 86
页数:24
相关论文
共 50 条
  • [1] A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
    Moiola, Andrea
    Perugia, Ilaria
    [J]. NUMERISCHE MATHEMATIK, 2018, 138 (02) : 389 - 435
  • [2] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [3] A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
    Andrea Moiola
    Ilaria Perugia
    [J]. Numerische Mathematik, 2018, 138 : 389 - 435
  • [4] A space-time discontinuous Galerkin method for the elastic wave equation
    Antonietti, Paola F.
    Mazzieri, Ilario
    Migliorini, Francesco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [5] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [6] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [7] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [8] A high-order space-time ultra-weak discontinuous Galerkin method for the second-order wave equation in one space dimension
    Baccouch, Mahboub
    Temimi, Helmi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [9] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [10] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635