A space-time discontinuous Galerkin method for the elastic wave equation

被引:10
|
作者
Antonietti, Paola F. [1 ]
Mazzieri, Ilario [1 ]
Migliorini, Francesco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Lab Modeling & Sci Comp, MOX, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin methods; Wave equation; Space-time finite elements; Stability and convergence analysis; FINITE-ELEMENT METHODS; ELASTODYNAMICS; FORMULATIONS; SEMIIMPLICIT; MESHES; APPROXIMATIONS; STABILITY; SCHEMES;
D O I
10.1016/j.jcp.2020.109685
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we present a new high order space-time discretization method based on a discontinuous Galerkin paradigm for the second order visco-elastodynamics equation. After introducing the method, we show that the resulting space-time discontinuous Galerkin formulation is well-posed, stable and retains optimal rate of convergence with respect to the discretization parameters, namely the mesh size and the polynomial approximation degree. A set of two and three-dimensional numerical experiments confirms the theoretical bounds. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [2] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [3] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [4] A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION
    Banjai, Lehel
    Georgoulis, Emmanuil H.
    Lijoka, Oluwaseun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 63 - 86
  • [5] Elastic Wave Propagation Analysis Using the Space-Time Discontinuous Galerkin Quadrature Element Method
    Liao, Minmao
    Wei, Jie
    Zhao, Jiaze
    Fan, Wensu
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2024, 150 (10)
  • [6] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [7] Convergence of a space-time continuous Galerkin method for the wave equation
    Zhao, Zhihui
    Li, Hong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [8] Convergence of a space-time continuous Galerkin method for the wave equation
    Zhihui Zhao
    Hong Li
    [J]. Journal of Inequalities and Applications, 2016
  • [9] A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
    Moiola, Andrea
    Perugia, Ilaria
    [J]. NUMERISCHE MATHEMATIK, 2018, 138 (02) : 389 - 435
  • [10] A space-time finite element method for the nonlinear Schrodinger equation: The discontinuous Galerkin method
    Karakashian, O
    Makridakis, C
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 479 - 499