A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

被引:24
|
作者
Moiola, Andrea [1 ,2 ]
Perugia, Ilaria [3 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
FINITE-ELEMENT METHODS; ELASTODYNAMICS; SYSTEMS; POINTS;
D O I
10.1007/s00211-017-0910-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a space-time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599-1635, 2016). Test and trial discrete functions are space-time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space-time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on "tent-pitched" meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds.
引用
收藏
页码:389 / 435
页数:47
相关论文
共 50 条
  • [1] A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
    Andrea Moiola
    Ilaria Perugia
    [J]. Numerische Mathematik, 2018, 138 : 389 - 435
  • [2] A TREFFTZ POLYNOMIAL SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SECOND ORDER WAVE EQUATION
    Banjai, Lehel
    Georgoulis, Emmanuil H.
    Lijoka, Oluwaseun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 63 - 86
  • [3] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [4] A space-time discontinuous Galerkin method for the elastic wave equation
    Antonietti, Paola F.
    Mazzieri, Ilario
    Migliorini, Francesco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [5] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [6] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [7] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [8] A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
    Zhang, Tie
    Liu, Jingna
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 665 - 678
  • [9] Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems
    Doerfler, Willy
    Findeisen, Stefan
    Wieners, Christian
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (03) : 409 - 428
  • [10] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711