A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

被引:24
|
作者
Moiola, Andrea [1 ,2 ]
Perugia, Ilaria [3 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
FINITE-ELEMENT METHODS; ELASTODYNAMICS; SYSTEMS; POINTS;
D O I
10.1007/s00211-017-0910-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a space-time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599-1635, 2016). Test and trial discrete functions are space-time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space-time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on "tent-pitched" meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds.
引用
收藏
页码:389 / 435
页数:47
相关论文
共 50 条
  • [21] A space-time discontinuous Galerkin method for elastodynamic analysis
    Yin, L
    Acharya, A
    Sobh, N
    Haber, RB
    Tortorelli, DA
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 459 - 464
  • [22] STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD
    Vlasak, Miloslav
    Balazsova, Monika
    Feistauer, Miloslav
    [J]. PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 237 - 246
  • [23] Comparison of Newmark and space-time discontinuous Galerkin method
    Aksoy, HG
    Tanröver, H
    Senocak, E
    [J]. ENGINEERING, CONSTRUCTION AND OPERATIONS IN CHALLENGING ENVIRONMENTS: EARTH AND SPACE 2004, 2004, : 532 - 539
  • [24] Space-time discontinuous Galerkin method for linear elastodynamics
    Aksoy, H. G.
    Senocak, E.
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2007, 20 (02) : 128 - 131
  • [25] An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation
    Stanglmeier, M.
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 748 - 769
  • [26] Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation
    Dolejsi, Vit
    Shin, Hyun-Geun
    Vlasak, Miloslav
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)
  • [27] Space-time discontinuous Galerkin approximation of acoustic waves with point singularities
    Bansal, Pratyuksh
    Moiola, Andrea
    Perugia, Ilaria
    Schwab, Christoph
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2056 - 2109
  • [28] A Trefftz-discontinuous Galerkin method for time-harmonic elastic wave problems
    Long Yuan
    Yang Liu
    [J]. Computational and Applied Mathematics, 2019, 38
  • [29] Numerical Diffusion Control of a Space-Time Discontinuous Galerkin Method
    Borrel, Michel
    Ryan, Juliette
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 469 - 483
  • [30] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939