A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems

被引:0
|
作者
Wang, Jindong [1 ]
Wu, Shuonan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
北京市自然科学基金;
关键词
Hybridizable discontinuous Galerkin; Magnetic advection-diffusion; Degenearate Friedrichs system; Local postprocessing; FINITE-ELEMENT-METHOD; RESIDUAL-FREE BUBBLES; DEGREE HDG METHODS; STABILIZED GALERKIN; ERROR ANALYSIS; A-PRIORI; APPROXIMATIONS; EQUATIONS;
D O I
10.1007/s10915-024-02540-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a hybridizable discontinuous Galerkin (HDG) method for solving a mixed magnetic advection-diffusion problem within a more general Friedrichs system framework. With carefully constructed numerical traces, we introduce two distinct stabilization parameters: tau t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _t$$\end{document} for the tangential trace and tau n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _n$$\end{document} for the normal trace. These parameters are tailored to satisfy different requirements, ensuring the stability and convergence of the method. Furthermore, we incorporate a weight function to facilitate the establishment of stability conditions. We also investigate an elementwise postprocessing technique that proves to be effective for both two-dimensional and three-dimensional problems in terms of broken H(curl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{H}}(\textrm{curl})$$\end{document} semi-norm accuracy improvement. Extensive numerical examples are presented to showcase the performance and effectiveness of the HDG method and the postprocessing techniques.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems
    Karaaslan, Mehmet Fatih
    Celiker, Fatih
    Kurulay, Muhammet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 20 - 27
  • [42] The Differential Transform Method for Advection-Diffusion Problems
    Patricio, M. F.
    Rosa, P. A.
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 456 - +
  • [43] DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS
    Ayuso, Blanca
    Marini, L. Donatella
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1391 - 1420
  • [44] Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems
    Causin, P
    Sacco, R
    Bottasso, CL
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1087 - 1114
  • [45] Comparison of Galerkin and control volume finite element for advection-diffusion problems
    Martinez, MJ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 50 (03) : 347 - 376
  • [46] Time-accurate solution of advection-diffusion problems by wavelet-Taylor-Galerkin method
    Mehra, M
    Kumar, BVR
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2005, 21 (06): : 313 - 326
  • [47] A hybridizable discontinuous Galerkin method for linear elasticity
    Soon, S. -C.
    Cockburn, B.
    Stolarski, Henryk K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (08) : 1058 - 1092
  • [48] A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates
    Jianguo Huang
    Xuehai Huang
    [J]. Journal of Scientific Computing, 2019, 78 : 290 - 320
  • [49] The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations
    Eshaghi, Jafar
    Kazem, Saeed
    Adibi, Hojjatollah
    [J]. ENGINEERING WITH COMPUTERS, 2019, 35 (04) : 1317 - 1332
  • [50] A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems
    Efendiev, Yalchin
    Lazarov, Raytcho
    Moon, Minam
    Shi, Ke
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 : 243 - 256