A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

被引:0
|
作者
Jianguo Huang
Xuehai Huang
机构
[1] Shanghai Jiao Tong University,Key Laboratory of Scientific and Engineering Computing (Ministry of Education), School of Mathematical Sciences
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Wenzhou University,Department of Mathematics
来源
关键词
Kirchhoff plates; Hybridizable discontinuous Galerkin method; Inf-sup condition; Superconvergence; Postprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm. Finally, some numerical results are shown to demonstrate the theoretical results.
引用
收藏
页码:290 / 320
页数:30
相关论文
共 50 条
  • [1] A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates
    Huang, Jianguo
    Huang, Xuehai
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 290 - 320
  • [2] Quasi-optimal convergence rate for an adaptive hybridizable discontinuous Galerkin method for Kirchhoff plates
    Sun, Pengtao
    Huang, Xuehai
    NUMERISCHE MATHEMATIK, 2018, 139 (04) : 795 - 829
  • [3] A hybridizable discontinuous Galerkin method for linear elasticity
    Soon, S. -C.
    Cockburn, B.
    Stolarski, Henryk K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (08) : 1058 - 1092
  • [4] A Compact C0 Discontinuous Galerkin Method for Kirchhoff Plates
    An, Rong
    Huang, Xuehai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1265 - 1287
  • [5] A hybridizable discontinuous Galerkin method for Stokes flow
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 582 - 597
  • [6] A new C0 discontinuous Galerkin method for Kirchhoff plates
    Huang, Jianguo
    Huang, Xuehai
    Han, Weimin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) : 1446 - 1454
  • [7] A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE p-LAPLACIAN
    Cockburn, Bernardo
    Shen, Jiguang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A545 - A566
  • [8] The Hybridizable Discontinuous Galerkin Methods
    Cockburn, Bernardo
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2749 - 2775
  • [9] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Huiqiang Yue
    Jian Cheng
    Tiegang Liu
    Vladimir Shaydurov
    Boundary Value Problems, 2016
  • [10] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Bernardo Cockburn
    Kassem Mustapha
    Numerische Mathematik, 2015, 130 : 293 - 314