A hybridizable discontinuous Galerkin method for fractional diffusion problems

被引:0
|
作者
Bernardo Cockburn
Kassem Mustapha
机构
[1] University of Minnesota,School of Mathematics
[2] King Fahd University of Petroleum and Minerals (KFUPM),Department of Mathematics and Statistics
来源
Numerische Mathematik | 2015年 / 130卷
关键词
26A33; 65M12; 65M15; 65M60; 65N30; 35L65;
D O I
暂无
中图分类号
学科分类号
摘要
We study the use of the hybridizable discontinuous Galerkin (HDG) method for numerically solving fractional diffusion equations of order -α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha $$\end{document} with -1<α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1<\alpha <0$$\end{document}. For exact time-marching, we derive optimal algebraic error estimates assuming that the exact solution is sufficiently regular. Thus, if for each time t∈[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in [0,T]$$\end{document} the approximations are taken to be piecewise polynomials of degree k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 0$$\end{document} on the spatial domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, the approximations to u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} in the L∞(0,T;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty \bigr (0,T;L_2(\varOmega )\bigr )$$\end{document}-norm and to ∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u$$\end{document} in the L∞(0,T;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty \bigr (0,T;\mathbf{L}_2(\varOmega )\bigr )$$\end{document}-norm are proven to converge with the rate hk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{k+1}$$\end{document}, where h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} is the maximum diameter of the elements of the mesh. Moreover, for k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document} and quasi-uniform meshes, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} converging with a rate of log(Th-2/(α+1))hk+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log (T h^{-2/(\alpha +1)})}\, \,h^{k+2}$$\end{document}.
引用
收藏
页码:293 / 314
页数:21
相关论文
共 50 条
  • [1] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [2] A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems
    Karaaslan, Mehmet Fatih
    Celiker, Fatih
    Kurulay, Muhammet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 20 - 27
  • [3] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Wenyu Lei
    Stefano Piani
    Patricio Farrell
    Nella Rotundo
    Luca Heltai
    [J]. Journal of Scientific Computing, 2024, 99
  • [4] A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems
    Wang, Jindong
    Wu, Shuonan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [5] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Lei, Wenyu
    Piani, Stefano
    Farrell, Patricio
    Rotundo, Nella
    Heltai, Luca
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [6] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Huiqiang Yue
    Jian Cheng
    Tiegang Liu
    Vladimir Shaydurov
    [J]. Boundary Value Problems, 2016
  • [7] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Bernardo Cockburn
    Bo Dong
    Johnny Guzmán
    [J]. Journal of Scientific Computing, 2009, 40 : 141 - 187
  • [8] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 141 - 187
  • [9] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Yue, Huiqiang
    Cheng, Jian
    Liu, Tiegang
    Shaydurov, Vladimir
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [10] A projective hybridizable discontinuous Galerkin mixed method for second-order diffusion problems
    Dijoux, Loic
    Fontaine, Vincent
    Mara, Thierry Alex
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 75 : 663 - 677