A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems

被引:0
|
作者
Wenyu Lei
Stefano Piani
Patricio Farrell
Nella Rotundo
Luca Heltai
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] SISSA – International School for Advance Studies,Mathematics Area
[3] Weierstrass Institute Berlin,Dipartimento di Matematica e Informatica
[4] ’Ulisse Dini’ – University of Florence,Dipartimento di Matematica
[5] University of Pisa,undefined
来源
关键词
Finite element methods; Discontinuous Galerkin methods; Hybrid methods weighted norms; Exponential fitting methods; Convection-diffusion equations; Drift-diffusion problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validates numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter–Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter–Gummel scheme (the state-of-the-art for finite volume discretization of transport-dominated problems) to arbitrary high-order approximations.
引用
收藏
相关论文
共 50 条
  • [1] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Lei, Wenyu
    Piani, Stefano
    Farrell, Patricio
    Rotundo, Nella
    Heltai, Luca
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [2] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Bernardo Cockburn
    Kassem Mustapha
    [J]. Numerische Mathematik, 2015, 130 : 293 - 314
  • [3] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [4] Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method
    Sakowski, Konrad
    Marcinkowski, Leszek
    Strak, Pawel
    Kempisty, Pawel
    Krukowski, Stanislaw
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 391 - 400
  • [5] A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems
    Wang, Jindong
    Wu, Shuonan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [6] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    Liu YunXian
    Shu Chi-Wang
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) : 115 - 140
  • [7] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    YunXian Liu
    Chi-Wang Shu
    [J]. Science China Mathematics, 2016, 59 : 115 - 140
  • [8] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    LIU YunXian
    SHU Chi-Wang
    [J]. Science China Mathematics, 2016, 59 (01) : 115 - 140
  • [9] A hybridizable direct discontinuous Galerkin method for elliptic problems
    Huiqiang Yue
    Jian Cheng
    Tiegang Liu
    Vladimir Shaydurov
    [J]. Boundary Value Problems, 2016
  • [10] A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems
    Bernardo Cockburn
    Bo Dong
    Johnny Guzmán
    [J]. Journal of Scientific Computing, 2009, 40 : 141 - 187