Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices

被引:25
|
作者
Liu YunXian [1 ]
Shu Chi-Wang [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
local discontinuous Galerkin method; semi-discrete; implicit-explicit scheme; error estimate; semiconductor; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; SMOOTH SOLUTIONS; ERROR ESTIMATE; MOMENT MODELS; CONVECTION; SIMULATIONS; STABILITY;
D O I
10.1007/s11425-015-5055-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully discrete local discontinuous Galerkin (LDG) schemes with smooth solutions. In the fully discrete scheme, we couple the implicit-explicit (IMEX) time discretization with the LDG spatial discretization, in order to allow larger time steps and to save computational cost. The main technical difficulty in the analysis is to treat the inter-element jump terms which arise from the discontinuous nature of the numerical method and the nonlinearity and coupling of the models. A simulation is also performed to validate the analysis.
引用
收藏
页码:115 / 140
页数:26
相关论文
共 50 条
  • [1] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    YunXian Liu
    Chi-Wang Shu
    [J]. Science China Mathematics, 2016, 59 : 115 - 140
  • [2] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    LIU YunXian
    SHU Chi-Wang
    [J]. Science China Mathematics, 2016, 59 (01) : 115 - 140
  • [3] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [4] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Lei, Wenyu
    Piani, Stefano
    Farrell, Patricio
    Rotundo, Nella
    Heltai, Luca
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [5] Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method
    Sakowski, Konrad
    Marcinkowski, Leszek
    Strak, Pawel
    Kempisty, Pawel
    Krukowski, Stanislaw
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 391 - 400
  • [6] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Wenyu Lei
    Stefano Piani
    Patricio Farrell
    Nella Rotundo
    Luca Heltai
    [J]. Journal of Scientific Computing, 2024, 99
  • [7] Nonequilibrium drift-diffusion model for organic semiconductor devices
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    [J]. PHYSICAL REVIEW B, 2016, 94 (03)
  • [8] On a Drift-Diffusion System for Semiconductor Devices
    Granero-Belinchon, Rafael
    [J]. ANNALES HENRI POINCARE, 2016, 17 (12): : 3473 - 3498
  • [9] An HDG Method for the Time-dependent Drift-Diffusion Model of Semiconductor Devices
    Chen, Gang
    Monk, Peter
    Zhang, Yangwen
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 420 - 443
  • [10] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Shimada, Tomoko
    Odanaka, Shinji
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 485 - 493