A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices

被引:2
|
作者
Shimada, Tomoko [1 ]
Odanaka, Shinji [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Toyonaka, Osaka 5600043, Japan
[2] Osaka Univ, Cybermedia Ctr, Toyonaka, Osaka 5600043, Japan
关键词
Quantum drift-diffusion model; Numerical scheme; Simulation; Partial differential equation; Free energy; Semiconductors;
D O I
10.1007/s10825-008-0258-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a numerical method for a transient quantum drift-diffusion model arising in semiconductor devices. The discretization method is presented with emphasis on adaptive time discretization. An adaptive time step algorithm is constructed by introducing the derivative of the free energy of the system, which has an essential property to understand the carrier behavior of the time-dependent problems. The algorithm is verified with switching characteristics of one-dimensional n(+)-n-n(+) silicon diodes. It is shown that the time step is adapted to the switching characteristics. The new algorithm significantly reduces the total number of time steps.
引用
收藏
页码:485 / 493
页数:9
相关论文
共 50 条
  • [1] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Tomoko Shimada
    Shinji Odanaka
    [J]. Journal of Computational Electronics, 2008, 7 : 485 - 493
  • [2] Quantum drift-diffusion model for IMPATT devices
    Aritra Acharyya
    Subhashri Chatterjee
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    [J]. Journal of Computational Electronics, 2014, 13 : 739 - 752
  • [3] Quantum drift-diffusion model for IMPATT devices
    Acharyya, Aritra
    Chatterjee, Subhashri
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 739 - 752
  • [4] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [5] Nonequilibrium drift-diffusion model for organic semiconductor devices
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    [J]. PHYSICAL REVIEW B, 2016, 94 (03)
  • [6] Numerical approximation of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 519 - 524
  • [7] On a Drift-Diffusion System for Semiconductor Devices
    Granero-Belinchon, Rafael
    [J]. ANNALES HENRI POINCARE, 2016, 17 (12): : 3473 - 3498
  • [8] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    Liu YunXian
    Shu Chi-Wang
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) : 115 - 140
  • [9] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    YunXian Liu
    Chi-Wang Shu
    [J]. Science China Mathematics, 2016, 59 : 115 - 140
  • [10] An HDG Method for the Time-dependent Drift-Diffusion Model of Semiconductor Devices
    Chen, Gang
    Monk, Peter
    Zhang, Yangwen
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 420 - 443