A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

被引:0
|
作者
Jianguo Huang
Xuehai Huang
机构
[1] Shanghai Jiao Tong University,Key Laboratory of Scientific and Engineering Computing (Ministry of Education), School of Mathematical Sciences
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Wenzhou University,Department of Mathematics
来源
关键词
Kirchhoff plates; Hybridizable discontinuous Galerkin method; Inf-sup condition; Superconvergence; Postprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm. Finally, some numerical results are shown to demonstrate the theoretical results.
引用
收藏
页码:290 / 320
页数:30
相关论文
共 50 条
  • [31] A hybridizable discontinuous Galerkin method with characteristic variables for Helmholtz problems
    Modave, Axel
    Chaumont-Frelet, Theophile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 493
  • [32] Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation
    Griesmaier, Roland
    Monk, Peter
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (03) : 291 - 310
  • [33] Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation
    Roland Griesmaier
    Peter Monk
    Journal of Scientific Computing, 2011, 49 : 291 - 310
  • [34] Multiscale hybridizable discontinuous Galerkin method for elliptic problems in perforated domains
    Cho, Kanghun
    Moon, Minam
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 365
  • [35] A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems
    Karaaslan, Mehmet Fatih
    Celiker, Fatih
    Kurulay, Muhammet
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 20 - 27
  • [36] ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION
    Chen, Gang
    Han, Daozhi
    Singler, John R.
    Zhang, Yangwen
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 83 - 109
  • [37] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Wenyu Lei
    Stefano Piani
    Patricio Farrell
    Nella Rotundo
    Luca Heltai
    Journal of Scientific Computing, 2024, 99
  • [38] A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction
    Sheldona, Jason P.
    Miller, Scott T.
    Pitt, Jonathan S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 91 - 114
  • [39] A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Chen, Huangxin
    Lu, Peipei
    Xu, Xuejun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) : 2166 - 2188
  • [40] A high order unfitted hybridizable discontinuous Galerkin method for linear elasticity
    Cardenas, Juan Manuel
    Solano, Manuel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 945 - 979