A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

被引:0
|
作者
Jianguo Huang
Xuehai Huang
机构
[1] Shanghai Jiao Tong University,Key Laboratory of Scientific and Engineering Computing (Ministry of Education), School of Mathematical Sciences
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Wenzhou University,Department of Mathematics
来源
关键词
Kirchhoff plates; Hybridizable discontinuous Galerkin method; Inf-sup condition; Superconvergence; Postprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm. Finally, some numerical results are shown to demonstrate the theoretical results.
引用
收藏
页码:290 / 320
页数:30
相关论文
共 50 条
  • [41] MANYCORE PARALLEL COMPUTING FOR A HYBRIDIZABLE DISCONTINUOUS GALERKIN NESTED MULTIGRID METHOD
    Fabien, Maurice S.
    Knepley, Matthew G.
    Mills, Richard T.
    Riviere, Beatrice M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : C73 - C96
  • [42] A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems
    Wang, Jindong
    Wu, Shuonan
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [43] A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem
    Cesmelioglu, Aycil
    Lee, Jeonghun J.
    Rhebergen, Sander
    Tabaku, Dorisa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 165 : 180 - 195
  • [44] A hybridizable discontinuous Galerkin method for solving nonlocal optical response models
    Li, Liang
    Lanteri, Stephane
    Mortensen, N. Asger
    Wubs, Martijn
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 219 : 99 - 107
  • [45] Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
    Celiker, Fatih
    Cockburn, Bernardo
    Shi, Ke
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (01) : 1 - 37
  • [46] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Lei, Wenyu
    Piani, Stefano
    Farrell, Patricio
    Rotundo, Nella
    Heltai, Luca
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [47] Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
    Fatih Celiker
    Bernardo Cockburn
    Ke Shi
    Journal of Scientific Computing, 2010, 44 : 1 - 37
  • [48] A GPU-Accelerated Hybridizable Discontinuous Galerkin Method for Linear Elasticity
    Fabien, Maurice S.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (02) : 513 - 545
  • [49] A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems
    Efendiev, Yalchin
    Lazarov, Raytcho
    Moon, Minam
    Shi, Ke
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 : 243 - 256
  • [50] A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
    Kirk, Keegan L. A.
    Riviere, Beatrice
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)