Quasi-optimal convergence rate for an adaptive hybridizable discontinuous Galerkin method for Kirchhoff plates

被引:0
|
作者
Sun, Pengtao [3 ]
Huang, Xuehai [1 ,2 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
[3] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
A posteriori error estimates; Adaptive hybridizable C-0 discontinuous Galerkin method; Convergence; Computational complexity; Kirchhoff plate bending problems; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATOR; PENALTY METHOD; MIXED METHODS; APPROXIMATIONS; REFINEMENT; ALGORITHM;
D O I
10.1007/s00211-018-0953-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an adaptive hybridizable discontinuous Galerkin (HCDG) method for Kirchhoff plates. A reliable and efficient a posteriori error estimator is produced for this HCDG method. Quasi-orthogonality and discrete reliability are established with the help of a postprocessed bending moment and the discrete Helmholtz decomposition. Based on these, the contraction property between two consecutive loops and complexity of the adaptive HCDG method are studied thoroughly. The key points in our analysis are a postprocessed normal-normal continuous bending moment from the HCDG method solution and a lifting of jump residuals from inter-element boundaries to element interiors.
引用
收藏
页码:795 / 829
页数:35
相关论文
共 50 条
  • [1] QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD
    Bonito, Andrea
    Nochetto, Ricardo H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 734 - 771
  • [2] A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates
    Jianguo Huang
    Xuehai Huang
    [J]. Journal of Scientific Computing, 2019, 78 : 290 - 320
  • [3] A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates
    Huang, Jianguo
    Huang, Xuehai
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 290 - 320
  • [4] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348
  • [5] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [6] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE METHOD FOR THE INTEGRAL FRACTIONAL LAPLACIAN
    Faustmann, Markus
    Melenk, Jens Markus
    Praetorius, Dirk
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1557 - 1587
  • [7] Quasi-Optimal Convergence Rate of an Adaptive Weakly Over-Penalized Interior Penalty Method
    Luke Owens
    [J]. Journal of Scientific Computing, 2014, 59 : 309 - 333
  • [8] Quasi-Optimal Convergence Rate of an Adaptive Weakly Over-Penalized Interior Penalty Method
    Owens, Luke
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (02) : 309 - 333
  • [9] Adaptive Security with Quasi-Optimal Rate
    Hemenway, Brett
    Ostrovsky, Rafail
    Richelson, Silas
    Rosen, Alon
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 525 - 541
  • [10] CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
    Becker, Roland
    Mao, Shipeng
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1203 - 1219