QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE METHOD FOR THE INTEGRAL FRACTIONAL LAPLACIAN

被引:9
|
作者
Faustmann, Markus [1 ]
Melenk, Jens Markus [1 ]
Praetorius, Dirk [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
BOUNDARY-ELEMENT METHODS; ARONSZAJN-SLOBODECKIJ NORM; PART II; APPROXIMATION; EQUATIONS; LOCALIZATION; REGULARITY; DOMAINS;
D O I
10.1090/mcom/3603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the discretization of the integral fractional Laplacian (-Delta)(s), 0 < s < 1, based on piecewise linear functions, we present and analyze a reliable weighted residual a posteriori error estimator. In order to compensate for the lack of L-2-regularity of the residual in the regime 3/4 < s < 1, this weighted residual error estimator includes as an additional weight a power of the distance from the mesh skeleton. We prove optimal convergence rates for an h-adaptive algorithm driven by this error estimator. Key to the analysis of the adaptive algorithm are local inverse estimates for the fractional Laplacian.
引用
收藏
页码:1557 / 1587
页数:31
相关论文
共 50 条
  • [1] QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD
    Bonito, Andrea
    Nochetto, Ricardo H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 734 - 771
  • [2] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348
  • [3] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [4] Quasi-optimal convergence rate for an adaptive hybridizable discontinuous Galerkin method for Kirchhoff plates
    Sun, Pengtao
    Huang, Xuehai
    [J]. NUMERISCHE MATHEMATIK, 2018, 139 (04) : 795 - 829
  • [5] Quasi-Optimal Convergence Rate of an Adaptive Weakly Over-Penalized Interior Penalty Method
    Luke Owens
    [J]. Journal of Scientific Computing, 2014, 59 : 309 - 333
  • [6] Quasi-Optimal Convergence Rate of an Adaptive Weakly Over-Penalized Interior Penalty Method
    Owens, Luke
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (02) : 309 - 333
  • [7] Adaptive Security with Quasi-Optimal Rate
    Hemenway, Brett
    Ostrovsky, Rafail
    Richelson, Silas
    Rosen, Alon
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 525 - 541
  • [8] CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
    Becker, Roland
    Mao, Shipeng
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1203 - 1219
  • [9] On the finite element method for the biharmonic Dirichlet problem in polygonal domains; Quasi-optimal rate of convergence
    Mizutani, A
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2005, 22 (01) : 45 - 56
  • [10] On the finite element method for the biharmonic dirichlet problem in polygonal domains; quasi-optimal rate of convergence
    Akira Mizutani
    [J]. Japan Journal of Industrial and Applied Mathematics, 2005, 22