Regularity for Double Phase Functionals with Two Modulating Coefficients

被引:0
|
作者
Bogi Kim
Jehan Oh
机构
[1] Kyungpook National University,Department of Mathematics
来源
关键词
Double phase problem; Minimizer; Nonstandard growth; Regularity; Primary 35B65; Secondary 35J70, 49N60, 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish regularity results for local minimizers of functionals with non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral with two modulating coefficients w↦∫[a(x)|Dw|p+b(x)|Dw|q]dx,1<p<q,a(·),b(·)≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w\mapsto \int [a(x)|Dw|^p+b(x)|Dw|^q] dx, \qquad 1<p<q, \qquad a(\cdot ),b(\cdot )\ge 0, \end{aligned}$$\end{document}with 0<μ≤a(·)+b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu \le a(\cdot )+b(\cdot )$$\end{document}. Here, the coefficient b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(\cdot )$$\end{document} is assumed to be Hölder continuous and the coefficient a(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(\cdot )$$\end{document} is assumed to be uniformly continuous.
引用
收藏
相关论文
共 50 条
  • [41] CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (03): : 715 - 723
  • [42] Campanato-Morrey spaces for the double phase functionals
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 817 - 834
  • [43] BOUNDARY GROWTH OF SOBOLEV FUNCTIONS FOR DOUBLE PHASE FUNCTIONALS
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 279 - 292
  • [44] Hardy-Sobolev inequalities for double phase functionals
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    HOKKAIDO MATHEMATICAL JOURNAL, 2023, 52 (02) : 331 - 352
  • [45] Partial regularity for ω-minimizers of quasiconvex functionals
    Li, Zhuolin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [46] On the Lipschitz regularity of minimizers of anisotropic functionals
    Siepe, F
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) : 69 - 94
  • [47] Functionals with p(x) growth and regularity
    Acerbi, G.
    Mingione, G.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 2000, 11 (03): : 169 - 174
  • [48] The Regularity of Critical Points of Polyconvex Functionals
    László Székelyhidi, Jr.
    Archive for Rational Mechanics and Analysis, 2004, 172 : 133 - 152
  • [49] Sobolev regularity for convex functionals on BD
    Franz Gmeineder
    Jan Kristensen
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [50] Sobolev regularity for convex functionals on BD
    Gmeineder, Franz
    Kristensen, Jan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)