Regularity for Double Phase Functionals with Two Modulating Coefficients

被引:0
|
作者
Bogi Kim
Jehan Oh
机构
[1] Kyungpook National University,Department of Mathematics
来源
关键词
Double phase problem; Minimizer; Nonstandard growth; Regularity; Primary 35B65; Secondary 35J70, 49N60, 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish regularity results for local minimizers of functionals with non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral with two modulating coefficients w↦∫[a(x)|Dw|p+b(x)|Dw|q]dx,1<p<q,a(·),b(·)≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w\mapsto \int [a(x)|Dw|^p+b(x)|Dw|^q] dx, \qquad 1<p<q, \qquad a(\cdot ),b(\cdot )\ge 0, \end{aligned}$$\end{document}with 0<μ≤a(·)+b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu \le a(\cdot )+b(\cdot )$$\end{document}. Here, the coefficient b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(\cdot )$$\end{document} is assumed to be Hölder continuous and the coefficient a(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(\cdot )$$\end{document} is assumed to be uniformly continuous.
引用
收藏
相关论文
共 50 条
  • [21] -Regularity for Vector-Valued Minimizers of Quasilinear Functionals with VMO-Coefficients
    Danecek, Josef
    Viszus, Eugen
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (04) : 1287 - 1305
  • [22] Harnack inequalities for double phase functionals
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 206 - 222
  • [23] On the regularity of the ω-minima of φ-functionals
    De Filippis, Cristiana
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
  • [24] Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients
    Giova, Raffaella
    di Napoli, Antonia Passarelli
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (01) : 85 - 110
  • [25] Regularity for Double Phase Variational Problems
    Maria Colombo
    Giuseppe Mingione
    Archive for Rational Mechanics and Analysis, 2015, 215 : 443 - 496
  • [26] Regularity for Double Phase Variational Problems
    Colombo, Maria
    Mingione, Giuseppe
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 443 - 496
  • [27] SOBOLEV'S THEOREM FOR DOUBLE PHASE FUNCTIONALS
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 17 - 33
  • [28] Campanato–Morrey spaces for the double phase functionals
    Yoshihiro Mizuta
    Eiichi Nakai
    Takao Ohno
    Tetsu Shimomura
    Revista Matemática Complutense, 2020, 33 : 817 - 834
  • [29] Partial regularity of minimizers of functionals with discontinuous coefficients of low integrability with applications to nonlinear elliptic systems
    Goodrich, Christopher S.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (11) : 1599 - 1626
  • [30] -regularity for minima of functionals with -growth
    Ok, Jihoon
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 2697 - 2731