Regularity for Double Phase Functionals with Two Modulating Coefficients

被引:0
|
作者
Bogi Kim
Jehan Oh
机构
[1] Kyungpook National University,Department of Mathematics
来源
关键词
Double phase problem; Minimizer; Nonstandard growth; Regularity; Primary 35B65; Secondary 35J70, 49N60, 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish regularity results for local minimizers of functionals with non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral with two modulating coefficients w↦∫[a(x)|Dw|p+b(x)|Dw|q]dx,1<p<q,a(·),b(·)≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w\mapsto \int [a(x)|Dw|^p+b(x)|Dw|^q] dx, \qquad 1<p<q, \qquad a(\cdot ),b(\cdot )\ge 0, \end{aligned}$$\end{document}with 0<μ≤a(·)+b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu \le a(\cdot )+b(\cdot )$$\end{document}. Here, the coefficient b(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(\cdot )$$\end{document} is assumed to be Hölder continuous and the coefficient a(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(\cdot )$$\end{document} is assumed to be uniformly continuous.
引用
收藏
相关论文
共 50 条
  • [31] GRADIENT REGULARITY FOR NON-AUTONOMOUS FUNCTIONALS WITH DINI OR NON-DINI CONTINUOUS COEFFICIENTS
    Baroni, Paolo
    Coscia, Alessandra
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (80)
  • [32] CONVEX FUNCTIONALS AND PARTIAL REGULARITY
    ANZELLOTTI, G
    GIAQUINTA, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 102 (03) : 243 - 272
  • [33] ON THE REGULARITY OF MINIMIZERS TO DEGENERATE FUNCTIONALS
    Di Gironimo, P.
    D'Onofrio, L.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (05) : 1311 - 1318
  • [34] Everywhere regularity of functionals with φ-growth
    Diening, Lars
    Stroffolini, Bianca
    Verde, Anna
    MANUSCRIPTA MATHEMATICA, 2009, 129 (04) : 449 - 481
  • [35] Regularity for a class of integral functionals
    Li, Shuoyang
    Gao, Meng
    Gao, Hongya
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3410 - 3422
  • [36] Everywhere regularity of functionals with φ-growth
    Lars Diening
    Bianca Stroffolini
    Anna Verde
    manuscripta mathematica, 2009, 129 : 449 - 481
  • [37] Holder regularity for nonlocal double phase equations
    De Filippis, Cristiana
    Palatucci, Giampiero
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) : 547 - 586
  • [38] Partial regularity for steady double phase fluids†
    Scilla, Giovanni
    Stroffolini, Bianca
    MATHEMATICS IN ENGINEERING, 2023, 5 (05): : 1 - 47
  • [39] Regularity for subelliptic double obstacle problems with discontinuous coefficients in Carnot group
    Du, Guangwei
    Wang, Xinjing
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2024, 67 (01): : 91 - 104
  • [40] ELLIPTIC SYSTEMS WITH BOUNDED SOLUTIONS AND DOUBLE PHASE FUNCTIONALS
    Leonetti, Francesco
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2024, 15 (01) : 138 - 163