On the smoothness in the weighted Triebel-Lizorkin and Besov spaces via the continuous wavelet transform with rotations

被引:0
|
作者
Navarro, Jaime [1 ]
Cruz-Barriguete, Victor A. [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Ciencias Basicas, Av San Pablo Xalpa 180, Mexico City 02128, DF, Mexico
关键词
Continuous wavelet transform with rotations; Weighted Besov spaces; Weighted Triebel-Lizorkin spaces; Weak solution; Differential operator; CONVERGENCE;
D O I
10.1007/s11868-024-00595-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to show that if u is an element of W-m,W- p (R-n) is a weak solution of Qu = f where f is an element of X-p,k(r,q) (R-n), then u is an element of X-p,k(m+r,q) (R-n) with 1 < p, q < infinity, 0 < r < 1, k is a temperate weight function in the Hormander sense, Q = Sigma (|beta|<= m) c(beta)(partial derivative beta) is a linear partial differential operator of order m >= 0 with non-zero constant coefficients c(beta), and where X-p,X-k (r,q) (R-n) is either the weighted Triebel-Lizorkin or the weighted Besov space. The way to prove this result is based on the boundedness of the continuous wavelet transform with rotations.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters
    Lu, Guo Zhen
    Zhu, Yue Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 39 - 52
  • [42] Spaces of distributions of Besov and Triebel-Lizorkin type for the Fourier-Bessel transform
    Cruz-Báez, DI
    Rodríguez, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (01) : 51 - 63
  • [43] A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces
    Bui, HQ
    Paluszynski, M
    Taibleson, MH
    STUDIA MATHEMATICA, 1996, 119 (03) : 219 - 246
  • [44] Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
    Saksman, Eero
    Soto, Tomas
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 98 - 115
  • [45] Approximation by Holder Functions in Besov and Triebel-Lizorkin Spaces
    Heikkinen, Toni
    Tuominen, Heli
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 455 - 482
  • [46] Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators
    The Anh Bui
    Xuan Thinh Duong
    Journal of Fourier Analysis and Applications, 2015, 21 : 405 - 448
  • [47] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [48] Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces
    Noi, Takahiro
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [49] An atomic decomposition of variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    ARMENIAN JOURNAL OF MATHEMATICS, 2009, 2 (01): : 1 - 12
  • [50] Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces
    Bourdaud, Gerard
    Moussai, Madani
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 878 - 894